- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Evans, Kory M (2)
-
Neves, Mayara P (2)
-
Aguilar, Andres (1)
-
Arnold, Kaleigh (1)
-
Brandl, Simon (1)
-
Buser, Thaddaeus J (1)
-
Chan, Howan (1)
-
Hugi, April (1)
-
Larouche, Olivier (1)
-
Sandel, Michael W (1)
-
Sidlauskas, Brian L (1)
-
Summers, Adam P (1)
-
Titus, Kara (1)
-
Westneat, Mark W (1)
-
Zelditch, Miriam L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neves, Mayara P; Hugi, April; Chan, Howan; Arnold, Kaleigh; Titus, Kara; Westneat, Mark W; Zelditch, Miriam L; Brandl, Simon; Evans, Kory M (, Proceedings of the Royal Society B: Biological Sciences)During ontogeny, animals often undergo significant shape and size changes, coinciding with ecological shifts. This is evident in parrotfishes (Eupercaria: Labridae), which experience notable ecological shifts during development, transitioning from carnivorous diets as larvae and juveniles to herbivorous and omnivorous diets as adults, using robust beaks and skulls for feeding on coral skeletons and other hard substrates. These ontogenetic shifts mirror their evolutionary history, as parrotfishes are known to have evolved from carnivorous wrasse ancestors. Parallel shifts at ontogenetic and phylogenetic levels may have resulted in similar evolutionary and ontogenetic allometric trajectories within parrotfishes. To test this hypothesis, using micro-computed tomography (μCT) scanning and three-dimensional geometric morphometrics, we analyse the effects of size on the skull shape of the striped parrotfishScarus iseriand compare its ontogenetic allometry to the evolutionary allometries of 57 parrotfishes and 162 non-parrotfish wrasses. The youngS. iserihave skull shapes resembling non-parrotfish wrasses and grow towards typical adult parrotfish forms as they mature. There was a significant relationship between size and skull shapes and strong evidence for parallel ontogenetic and evolutionary slopes in parrotfishes. Our findings suggest that morphological changes associated with the ecological shift characterizing interspecific parrotfish evolution are conserved in their intraspecific ontogenies.more » « less
An official website of the United States government
