- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Neville, Michael L. (4)
-
Figueroa, Joshua S. (3)
-
Moore, Curtis E. (2)
-
Abram, Ulrich (1)
-
Barnett, Brandon R. (1)
-
Bittl, Robert (1)
-
Busse, Marvin (1)
-
Chan, Chinglin (1)
-
Flores, Daniel M. (1)
-
Hagenbach, Adelheid (1)
-
Hernandez, Ritchie E. (1)
-
Mandla, Kyle A. (1)
-
Rheingold, Arnold L. (1)
-
Salsi, Federico (1)
-
Schmidt, Valerie A. (1)
-
Teutloff, Christian (1)
-
Wang, Shuai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Flores, Daniel M.; Neville, Michael L.; Schmidt, Valerie A. (, Nature Communications)Abstract 2 + 2 Photocycloadditions are idealized, convergent construction approaches of 4-membered heterocyclic rings, including azetidines. However, methods of direct excitation are limited by the unfavorable photophysical properties of imines and electronically unbiased alkenes. Here, we report copper-catalyzed photocycloadditions of non-conjugated imines and alkenes to produce a variety of substituted azetidines. Design principles allow this base metal-catalyzed method to achieve 2 + 2 imine-olefin photocycloaddition via selective alkene activation through a coordination-MLCT pathway supported by combined experimental and computational mechanistic studies.more » « less
-
Salsi, Federico; Wang, Shuai; Teutloff, Christian; Busse, Marvin; Neville, Michael L.; Hagenbach, Adelheid; Bittl, Robert; Figueroa, Joshua S.; Abram, Ulrich (, Angewandte Chemie International Edition)Abstract The first consistent series of mononuclear 17‐electron complexes of three Group 7 elements has been isolated in crystalline form and studied by X‐ray diffraction and spectroscopic methods. The paramagnetic compounds have a composition of [M0(CO)(CNp‐F‐ArDArF2)4] (M=Mn, Tc, Re; ArDArF2=2,6‐(3,5‐(CF3)2C6H3)2C6H2F) and are stabilized by four sterically encumbering isocyanides, which prevent the metalloradicals from dimerization. They have a square pyramidal structure with the carbonyl ligands as apexes. The frozen‐solution EPR spectra of the rhenium and technetium compounds are clearly anisotropic with large99Tc and185,187Re hyperfine interactions for one component. High‐field EPR (Q band and W band) has been applied for the elucidation of the EPR parameters of the manganese(0) complex.more » « less
-
Mandla, Kyle A.; Neville, Michael L.; Moore, Curtis E.; Rheingold, Arnold L.; Figueroa, Joshua S. (, Angewandte Chemie International Edition)Abstract Relative to other cyclic poly‐phosphorus species (that is,cyclo‐Pn), the planarcyclo‐P4group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2−dianion to a neutral metal fragment. Treatment of the neutral, molybdenumcyclo‐P4complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2and Mo(η4‐P4)(CO)2(CNArDipp2)2with KC8produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2−and [Mo(η4‐P4)(CO)2(CNArDipp2)]2−, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.more » « less