skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Newey, Whitney K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article surveys the development of nonparametric models and methods for estimation of choice models with nonlinear budget sets. The discussion focuses on the budget set regression, that is, the conditional expectation of a choice variable given the budget set. Utility maximization in a nonparametric model with general heterogeneity reduces the curse of dimensionality in this regression. Empirical results using this regression are different from maximum likelihood and give informative inference. The article also considers the information provided by kink probabilities for nonparametric utility with general heterogeneity. Instrumental variable estimation and the evidence it provides of heterogeneity in preferences are also discussed. 
    more » « less
  2. Shape restrictions have played a central role in economics as both testable implications of theory and sufficient conditions for obtaining informative counterfactual predictions. In this paper, we provide a general procedure for inference under shape restrictions in identified and partially identified models defined by conditional moment restrictions. Our test statistics and proposed inference methods are based on the minimum of the generalized method of moments (GMM) objective function with and without shape restrictions. Uniformly valid critical values are obtained through a bootstrap procedure that approximates a subset of the true local parameter space. In an empirical analysis of the effect of childbearing on female labor supply, we show that employing shape restrictions in linear instrumental variables (IV) models can lead to shorter confidence regions for both local and average treatment effects. Other applications we discuss include inference for the variability of quantile IV treatment effects and for bounds on average equivalent variation in a demand model with general heterogeneity.

     
    more » « less
  3. Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income. 
    more » « less
  4. Summary

    We provide adaptive inference methods, based on $\ell _1$ regularization, for regular (semiparametric) and nonregular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of nonregular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ‘double sparsity robustness’: either the approximation to the regression or the approximation to the representer can be ‘completely dense’ as long as the other is sufficiently ‘sparse’. Our main results are nonasymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.

     
    more » « less
  5. There are many economic parameters that depend on nonparametric first steps. Examples include games, dynamic discrete choice, average exact consumer surplus, and treatment effects. Often estimators of these parameters are asymptotically equivalent to a sample average of an object referred to as the influence function. The influence function is useful in local policy analysis, in evaluating local sensitivity of estimators, and constructing debiased machine learning estimators. We show that the influence function is a Gateaux derivative with respect to a smooth deviation evaluated at a point mass. This result generalizes the classic Von Mises (1947) and Hampel (1974) calculation to estimators that depend on smooth nonparametric first steps. We give explicit influence functions for first steps that satisfy exogenous or endogenous orthogonality conditions. We use these results to generalize the omitted variable bias formula for regression to policy analysis for and sensitivity to structural changes. We apply this analysis and find no sensitivity to endogeneity of average equivalent variation estimates in a gasoline demand application. 
    more » « less
  6. The elasticity of taxable income with respect to the net of tax rate is a key parameter for predicting the effect of tax reform or designing an income tax. Bunching at kinks and notches in a single budget set has been used to estimate the taxable income elasticity. We show that when the distribution of preferences is unrestricted the amount of bunching at a kink or a notch is not informative about the size of the taxable income elasticity, and neither is the entire distribution of taxable income for a convex budget set. Kinks do provide information about the size of the elasticity when a priori restrictions are placed on the preference distribution. They can identify the elasticity when the preference distribution is completely and correctly specified across the kink and provide bounds under restrictions on the preference distribution. We find wide estimated bounds in an empirical example using data like Saez (2010) based on upper and lower bounds for the preference density. 
    more » « less
  7. Multinomial choice models are fundamental for empirical modeling of economic choices among discrete alternatives. We analyze identification of binary and multinomial choice models when the choice utilities are nonseparable in observed attributes and multidimensional unobserved heterogeneity with cross-section and panel data. We show that derivatives of choice probabilities with respect to continuous attributes are weighted averages of utility derivatives in cross-section models with exogenous heterogeneity. In the special case of random coefficient models with an independent additive effect, we further characterize that the probability derivative at zero is proportional to the population mean of the coefficients. We extend the identification results to models with endogenous heterogeneity using either a control function or panel data. In time stationary panel models with two periods, we find that differences over time of derivatives of choice probabilities identify utility derivatives “on the diagonal,” i.e. when the observed attributes take the same values in the two periods. We also show that time stationarity does not identify structural derivatives “off the diagonal” both in continuous and multinomial choice panel models. 
    more » « less