skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Newhouse, Randal L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nuclear relaxation caused by diffusion of 111 In/Cd probe atoms was measured in four phases having the tetragonal FeGa 3 structure (tP16) using perturbed angular correlation spectroscopy (PAC) and used to gain insight into diffusion processes in phases having more than one diffusion sublattice. The three indide phases studied in this work have two inequivalent and interpenetrating In-sublattices, labeled In1 and In2, and nuclear quadrupole interactions were resolved for probes on each sublattice. The phases are line-compounds with narrow field-widths. Diffusional relaxations, fitted using an exponential damping ansatz , were measured at the two opposing boundary compositions as a function of temperature. “High” and “low” relaxation regimes were observed that are attributed to In-poorer and In-richer compositions, under the reasonable assumption that the atomic motion occurs via an indium-vacancy diffusion mechanism. Relaxation was observed to be greater for tracer atoms starting on In2 sites in the indides immediately following decay of 111 In into 111 Cd, which is attributed to a preference of daughter Cd-tracer atoms and/or indium vacancies to occupy In1 sites. Activation enthalpies for relaxation are compared with enthalpies for self-diffusion in indium metal. 
    more » « less