skip to main content


Search for: All records

Creators/Authors contains: "Ng, Wee Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees,Crithidia bombi, can infectEristalis tenaxflower flies. We also investigated the potential for two confirmed solitary bee hosts ofC. bombi,Osmia lignariaandMegachile rotundata, as well as two flower fly species,Eristalis arbustorumandE. tenax,to transmit the parasite at flowers. We found thatC. bombidid not replicate (i.e., cause an active infection) inE. tenaxflies. However, 93% of inoculated flies defecated liveC. bombiin their first fecal event, and all contaminated fecal events containedC. bombiat concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate thatEristalisflower flies are not hosts ofC. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or diluteC. bombiin bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.

     
    more » « less
  2. Abstract Aim

    Animal migration is often explained as the result of resource tracking in seasonally dynamic environments. Therefore, resource availability should influence both the distributions of migratory animals and their seasonal abundance. We examined the relationship between primary productivity and the spatio‐temporal distributions of migratory birds to assess the role of energy availability in avian migration.

    Location

    North America.

    Time period

    Full annual cycle, 2011–2016.

    Major taxa studied

    Nocturnally migrating landbirds.

    Methods

    We used observations of nocturnally migrating landbirds from the eBird community‐science programme to estimate weekly spatial distributions of total biomass, abundance and species richness. We related these patterns to primary productivity and seasonal productivity surplus estimated using a remotely sensed measure of vegetation greenness.

    Results

    All three avian metrics showed positive spatial associations with primary productivity, and this was more pronounced with seasonal productivity surplus. Surprisingly, biomass showed a weaker association than did abundance and richness, despite being a better indicator of energetic requirements. The strength of associations varied across seasons, being the weakest during migration. During spring migration, avian biomass increased ahead of vegetation green‐up in temperate regions, a pattern also previously described for herbivorous waterfowl. In the south‐eastern USA, spring green‐up was instead associated with a net decrease in biomass, and winter biomass greatly exceeded that of summer, highlighting the region as a winter refuge for short‐distance migrants.

    Main conclusions

    Although instantaneous energy availability is important in shaping the distribution of migratory birds, the stronger association of productivity with abundance and richness than with biomass suggests the role of additional drivers unrelated to energetic requirements that are nonetheless correlated with productivity. Given recent reports of widespread North American avifaunal declines, including many common species that winter in the south‐eastern USA, understanding how anthropogenic activities are impacting winter bird populations in the region should be a research priority.

     
    more » « less
  3. Abstract

    Species interaction networks, which play an important role in determining pathogen transmission and spread in ecological communities, can shift in response to agricultural landscape simplification. However, we know surprisingly little about how landscape simplification‐driven changes in network structure impact epidemiological patterns. Here, we combine mathematical modelling and data from eleven bipartite plant‐pollinator networks observed along a landscape simplification gradient to elucidate how changes in network structure shape disease dynamics. Our empirical data show that landscape simplification reduces pathogen prevalence in bee communities via increased diet breadth of the dominant species. Furthermore, our empirical data and theoretical model indicate that increased connectance reduces the likelihood of a disease outbreak and decreases variance in prevalence among bee species in the community, resulting in a dilution effect. Because infectious diseases are implicated in pollinator declines worldwide, a better understanding of how land use change impacts species interactions is therefore critical for conserving pollinator health.

     
    more » « less