skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wemida, Ayodeji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since SSH’s standardization nearly 20 years ago, real-world requirements for a remote access protocol and our understanding of how to build secure cryptographic network protocols have both evolved significantly. In this work, we introduce Hop, a transport and remote access protocol designed to support today’s needs. Building on modern cryptographic advances, Hop reduces SSH protocol complexity and overhead while simultaneously addressing many of SSH’s shortcomings through a cryptographically-mediated delegation scheme, native host identification based on lessons from TLS and ACME, client authentication for modern enterprise environments, and support for client roaming and intermittent connectivity. We present concrete design requirements for a modern remote access protocol, describe our proposed protocol, and evaluate its performance. We hope that our work encourages discussion of what a modern remote access protocol should look like in the future. 
    more » « less
    Free, publicly-accessible full text available September 1, 2027
  2. Free, publicly-accessible full text available January 1, 2027
  3. The future of the STEM workforce rests partly on the strength of the STEM teacher workforce to teach and nurture new generations of STEM graduates. However, the STEM teacher workforce is facing critical decline with the annual production dropping from about 31,000 a decade ago to around 20,000 in the last few years. This is concerning given the need for more STEM teachers to meet rising demands. Although production is decreasing, there are improvements in the diversity and qualifications of STEM teachers, including more female teachers and those with higher degrees in STEM fields. Investments in teacher salaries and financial support for STEM education can help address the shortage and improve the future STEM teacher workforce and STEM workforce. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  4. Free, publicly-accessible full text available December 22, 2026
  5. Learning the Hamiltonian underlying a quantum many-body system in thermal equilibrium is a fundamental task in quantum learning theory and experimental sciences. To learn the Gibbs state of local Hamiltonians at any inverse temperature β, the state-of-the-art provable algorithms fall short of the optimal sample and computational complexity, in sharp contrast with the locality and simplicity in the classical cases. In this work, we present a learning algorithm that learns each local term of a n-qubit D-dimensional Hamiltonian to an additive error ϵ with sample complexity $$\tilde{O}\left(\frac{e^{\mathrm{poly}(\beta)}}{\beta^2\epsilon^2}\right)\log(n)$$. The protocol uses parallelizable local quantum measurements that act within bounded regions of the lattice and near-linear-time classical post-processing. Thus, our complexity is near optimal with respect to n, ϵ and is polynomially tight with respect to β. We also give a learning algorithm for Hamiltonians with bounded interaction degree with sample and time complexities of similar scaling on n but worse on β, ϵ. At the heart of our algorithm is the interplay between locality, the Kubo-Martin-Schwinger condition, and the operator Fourier transform at arbitrary temperatures. 
    more » « less
    Free, publicly-accessible full text available December 14, 2026
  6. Free, publicly-accessible full text available December 1, 2026
  7. Abstract Unmanned Aerial Vehicles (UAVs) hold immense potential across various fields, including precision agriculture, rescue missions, delivery services, weather monitoring, and many more. Despite this promise, the limited flight duration of the current UAVs stands as a significant obstacle to their broadscale deployment. Attempting to extend flight time by solar panel charging during midflight is not viable due to battery limitations and the eventual need for replacement. This paper details our investigation of a battery-free fixed-wing UAV, built from cost-effective off-the-shelf components, that takes off, remains airborne, and lands safely using only solar energy. In particular, we perform a comprehensive analysis and design space exploration in the contemporary solar harvesting context and provide a detailed accounting of the prototype’s mechanical and electrical capabilities. We also derive the Greedy Energy-Aware Control (GEAC) and Predictive Energy-Aware Control (PEAC) solar control algorithm that overcomes power system brownouts and total-loss-of-thrust events, enabling the prototype to perform maneuvers without a battery. Next, we evaluate the developed prototype in a bench-top setting using artificial light to demonstrate the feasibility of batteryless flight, followed by testing in an outdoor setting using natural light. Finally, we analyze the potential for scaling up the evaluation of batteryless UAVs across multiple locations and report our findings. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  8. Free, publicly-accessible full text available December 15, 2026
  9. Free, publicly-accessible full text available November 1, 2026
  10. Free, publicly-accessible full text available November 1, 2026