skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Catherine T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerical simulation of liquefiable soil under cyclic undrained loading is essential for predicting earthquake-induced deformation of geotechnical structures in liquefaction hazard evaluation. Successful simulation of soil response requires constitutive models that can reasonably predict soil behavior under dynamic loading. Many advanced constitutive models have been developed for soil liquefaction hazard evaluation in the past four decades. These advanced models are built on plasticity theories with different modifications and assumptions. Nevertheless, the core part of all models was mainly developed based on observations from constant-volume (CV) cyclic direct simple shear (DSS) tests. While CV tests are standardized in the widely recognized ASTM D8296-19, true-undrained (TU) cyclic DSS tests wherein pore water pressure (PWP) is directly measured have also been performed in academic research. CV and TU cyclic DSS data were successfully generated at California State University, Los Angeles (Cal State LA), from the same apparatus. In this paper, the PM4Sand plasticity model is calibrated using CV and TU data. The performance of CV- and TU-calibrated models is cross-compared with TU and CV data, respectively. While results suggest trends in liquefaction capacity predictions, further data is required for comprehensive validation. The outcomes of this paper also provide insight into the calibration of PM4Sand over a range of relative densities and loading conditions. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026