Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study a class of semi-linear differential Volterra equations with polynomial-type potentials that incorporates the effects of memory while being subjected to random perturbations via an additive Gaussian noise. We show that for a broad class of non-linear potentials, the system always admits invariant probability measures. However, the presence of memory effects precludes access to compactness in a typical fashion. In this paper, this obstacle is overcome by introducing functional spaces adapted to the memory kernels, thereby allowing one to recover compactness. Under the assumption of sufficiently smooth noise, it is then shown that the statistically stationary states possess higher-order regularity properties dictated by the structure of the nonlinearity. This is established through a control argument that asymptotically transfers regularity onto the solution by exploiting the underlying Lyapunov structure of the system in a novel way.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We study the long time statistics of a walker in a hydrodynamic pilot-wave system, which is a stochastic Langevin dynamics with an external potential and memory kernel. While prior experiments and numerical simulations have indicated that the system may reach a statistically steady state, its long-time behavior has not been studied rigorously. For a broad class of external potentials and pilot-wave forces, we construct the solutions as a dynamics evolving on suitable path spaces. Then, under the assumption that the pilot-wave force is dominated by the potential, we demonstrate that the walker possesses a unique statistical steady state. We conclude by presenting an example of such an invariant measure, as obtained from a numerical simulation of a walker in a harmonic potential.more » « less
An official website of the United States government
