skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Khiem Chau"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A long-term goal is to gain synthetic access to native photosynthetic bacteriochlorophylls. A recently developed route entails Knoevenagel condensation of an AD dihydrodipyrrin ( I , bearing a carboxaldehyde attached to pyrroline ring D) and a BC dihydrodipyrrin ( II , bearing a β-ketoester attached to pyrrole ring C) to form the Z / E -enone. Acid-mediated double-ring closure of the E -enone III-E (Nazarov cyclization, electrophilic aromatic substitution, and elimination of methanol) affords the bacteriochlorophyll skeleton BC-1 containing the isocyclic ring (ring E), a trans -dialkyl group in ring D, and a gem-dimethyl group in ring B. Prior work established the synthesis and the integrity of the resulting trans -dialkyl groups and bacteriochlorin chromophore. The counterpart report here concerns an in-depth study of conditions for the double-ring closure: catalyst/solvent surveys; grid search including time courses of [ III-E ] versus [acid] concentrations emphasizing equimolar, inverse molar, and variable acid lines of inquiry; and chlorin byproduct quantitation. Key findings are that (1) the double-ring closure can be carried out in 4 h ( t 1/2 ∼ 40 min) instead of 20 h, affording ∼1/5th the chlorin byproduct (0.16%) while maintaining the yield of BC-1 (up to 77%); (2) the separate Z / E -enones of III have comparable reactivity; (3) sub-stoichiometric quantities of acid are ineffective; (4) the Knoevenagel condensation (40 mM, room temperature, piperidine/acetic acid in acetonitrile) and the acid-mediated double-ring closure (0.20 mM, 80 °C, Yb(OTf) 3 in acetonitrile) can be carried out in a two-step process; and (5) zinc insertion to form ZnBC-1 is straightforward. Together, the results enable streamlined conversion of dihydrodipyrrin reactants to the bacteriochlorophyll model compounds. 
    more » « less