Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 15, 2026
-
Free, publicly-accessible full text available February 5, 2026
-
Stability prediction is accelerated by treating the convex hull as a probabilistic object, allowing for an efficient active learning process that minimizes the number of thermodynamic calculations necessary to define the convex hull.more » « lessFree, publicly-accessible full text available October 28, 2025
-
Experimental design techniques such as active search and Bayesian optimization are widely used in the natural sciences for data collection and discovery. However, existing techniques tend to favor exploitation over exploration of the search space, which causes them to get stuck in local optima. This collapse problem prevents experimental design algorithms from yielding diverse high-quality data. In this paper, we extend the Vendi scores—a family of interpretable similarity-based diversity metrics—to account for quality. We then leverage these quality-weighted Vendi scores to tackle experimental design problems across various applications, including drug discovery, materials discovery, and reinforcement learning. We found that quality-weighted Vendi scores allow us to construct policies for experimental design that flexibly balance quality and diversity, and ultimately assemble rich and diverse sets of high-performing data points. Our algorithms led to a 70%–170% increase in the number of effective discoveries compared to baselines.more » « lessFree, publicly-accessible full text available July 27, 2025
-
Abstract Applications of machine learning (ML) in atmospheric science have been rapidly growing. To facilitate the development of ML models for tropical cyclone (TC) research, this binary dataset contains a specific customization of the National Center for Environmental Prediction (NCEP)/final analysis (FNL) data, in which key environmental conditions relevant to TC formation are extracted for a range of lead times (0–72 hours) during 1999–2023. The dataset is designed as multi-channel images centered on TC formation locations, with a positive and negative directory structure that can be readily read from any ML applications or common data interface. With its standard structure, this dataset provides users with a unique opportunity to conduct ML application research on TC formation as well as related predictability at different forecast lead times.more » « less
-
In recent years, the field of legged robotics has seen growing interest in enhancing the capabilities of these robots through the integration of articulated robotic arms. However, achieving successful loco-manipulation, especially involving interaction with heavy objects, is far from straightforward, as object manipulation can introduce substantial disturbances that impact the robot’s locomotion. This paper presents a novel framework for legged loco-manipulation that considers whole-body coordination through a hierarchical optimization-based control framework. First, an online manipulation planner computes the manipulation forces and manipulated object task-based reference trajectory. Then, pose optimization aligns the robot’s trajectory with kinematic constraints. The resultant robot reference trajectory is executed via a linear MPC controller incorporating the desired manipulation forces into its prediction model. Our approach has been validated in simulation and hardware experiments, highlighting the necessity of whole-body optimization compared to the baseline locomotion MPC when interacting with heavy objects. Experimental results with Unitree Aliengo, equipped with a custom-made robotic arm, showcase its ability to lift and carry an 8kg payload and manipulate doors.more » « less
-
Many applications require the deployment of legged-robot teams to effectively and efficiently carry out missions. The use of multiple robots allows tasks to be executed concurrently, expediting mission completion. It also enhances resilience by enabling task transfer in case of a robot failure. This paper presents a formulation based on Mixed Integer Linear Programming (MILP) for allocating tasks to robots by taking into account travel time and ensuring efficient execution of collaborative tasks. We extended the MILP formulation to account for complexities with legged robot teams. Our results demonstrate that this approach leads to improved performance in terms of the makespan of the mission. We demonstrate the usefulness of this approach using a case study involving the disinfection of a building consisting of multiple rooms.more » « less
-
Agile-legged robots have proven to be highly effective in navigating and performing tasks in complex and challenging environments, including disaster zones and industrial settings. However, these applications commonly require the capability of carrying heavy loads while maintaining dynamic motion. Therefore, this article presents a novel methodology for incorporating adaptive control into a force-based control system. Recent advancements in the control of quadruped robots show that force control can effectively realize dynamic locomotion over rough terrain. By integrating adaptive control into the force-based controller, our proposed approach can maintain the advantages of the baseline framework while adapting to significant model uncertainties and unknown terrain impact models. Experimental validation was successfully conducted on the Unitree A1 robot. With our approach, the robot can carry heavy loads (up to 50% of its weight) while performing dynamic gaits such as fast trotting and bounding across uneven terrains.more » « less
-
Active learning is a valuable tool for efficiently exploring complex spaces, finding a variety of uses in materials science. However, the determination of convex hulls for phase diagrams does not neatly fit into traditional active learning approaches due to their global nature. Specifically, the thermodynamic stability of a material is not simply a function of its own energy, but rather requires energetic information from all other competing compositions and phases. Here we present Convex hull-aware Active Learning (CAL), a novel Bayesian algorithm that chooses experiments to minimize the uncertainty in the convex hull. CAL prioritizes compositions that are close to or on the hull, leaving significant uncertainty in other compositions that are quickly determined to be irrelevant to the convex hull. The convex hull can thus be predicted with significantly fewer observations than approaches that focus solely on energy. Intrinsic to this Bayesian approach is uncertainty quantification in both the convex hull and all subsequent predictions (e.g., stability and chemical potential). By providing increased search efficiency and uncertainty quantification, CAL can be readily incorporated into the emerging paradigm of uncertainty-based workflows for thermodynamic prediction.more » « less