skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Quang‐Kha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Liquid metal composites are promising soft conductors for applications in soft electronics, sensors, and soft robotics. Existing liquid metal composites usually have a high‐volume fraction of liquid metal, which not only increases the density but also the material cost. Future applications in soft electronics and robotics highly demand liquid metal composites with low density and high conductivity for large‐scale, low‐cost, lightweight, and more sustainable applications. In this work, lightweight and highly conductive composites embedded with liquid metal fiber networks are synthesized. This new paradigm of liquid metal composites consists of an interconnected liquid metal fiber network embedded in a compliant rubber matrix. The liquid metal fiber network serves as an ultra‐lightweight conductive pathway for electrons. Experiments indicate that this soft conductive composite also possesses nearly strain‐insensitive conductance and superior cyclic stability. Potential applications of the composite films as stretchable interconnects, electrodes, and sensors are demonstrated. 
    more » « less