skip to main content

Search for: All records

Creators/Authors contains: "Nguyen, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
    Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
    Free, publicly-accessible full text available January 1, 2023
  4. Comstock, Laurie E. (Ed.)
    ABSTRACT Intestinal mucus is the first line of defense against intestinal pathogens. It acts as a physical barrier between epithelial tissues and the lumen that enteropathogens must overcome to establish a successful infection. We investigated the motile behavior of two Vibrio cholerae strains (El Tor C6706 and Classical O395) in mucus using single-cell tracking in unprocessed porcine intestinal mucus. We determined that V. cholerae can penetrate mucus using flagellar motility and that alkaline pH increases swimming speed and, consequently, improves mucus penetration. Microrheological measurements indicate that changes in pH between 6 and 8 (the physiological range for the human smallmore »intestine) had little effect on the viscoelastic properties of mucus. Finally, we determined that acidic pH promotes surface attachment by activating the mannose-sensitive hemagglutinin (MshA) pilus in V. cholerae El Tor C6706 without a measurable change in the total cellular concentration of the secondary messenger cyclic dimeric GMP (c-di-GMP). Overall, our results support the hypothesis that pH is an important factor affecting the motile behavior of V. cholerae and its ability to penetrate mucus. Therefore, changes in pH along the human small intestine may play a role in determining the preferred site for V. cholerae during infection. IMPORTANCE The diarrheal disease cholera is still a burden for populations in developing countries with poor sanitation. To develop effective vaccines and prevention strategies against Vibrio cholerae , we must understand the initial steps of infection leading to the colonization of the small intestine. To infect the host and deliver the cholera toxin, V. cholerae has to penetrate the mucus layer protecting the intestinal tissues. However, the interaction of V. cholerae with intestinal mucus has not been extensively investigated. In this report, we demonstrated using single-cell tracking that V. cholerae can penetrate intestinal mucus using flagellar motility. In addition, we observed that alkaline pH improves the ability of V. cholerae to penetrate mucus. This finding has important implications for understanding the dynamics of infection, because pH varies significantly along the small intestine, between individuals, and between species. Blocking mucus penetration by interfering with flagellar motility in V. cholerae , reinforcing the mucosa, controlling intestinal pH, or manipulating the intestinal microbiome will offer new strategies to fight cholera.« less
  5. This paper studies the problem of clustering in metric spaces while preserving the privacy of individual data. Specifically, we examine differentially private variants of the k-medians and Euclidean k-means problems. We present polynomial algorithms with constant multiplicative error and lower additive error than the previous state-of-the-art for each problem. Additionally, our algorithms use a clustering algorithm without differential privacy as a black-box. This allows practitioners to control the trade-off between runtime and approximation factor by choosing a suitable clustering algorithm to use.
  6. We previously proposed a method to locate high packetdelay variance links for OpenFlow networks by probing multicast measurement packets along a designed route and by collecting flow-stats of the probe packets from selected OpenFlow switches (OFSs). It is worth AQ1 noting that the packet-delay variance of a link is estimated based on arrival time intervals of probe packets without measuring delay times over the link. However, the previously used route scheme based on the shortest path tree may generate a probing route with many branches in a large network, resulting in many accesses to OFSs to locate all high delaymore »variance links. In this paper, therefore, we apply an Eulerian cycle-based scheme which we previously developed, to control the number of branches in a multicast probing route. Our proposal can reduce the load on the control-plane (i.e., the number of accesses to OFSs) while maintaining an acceptable measurement accuracy with a light load on the data-plane. Additionally, the impacts of packet losses and correlated delays over links on those different types of loads are investigated. By comparing our proposal with the shortest path tree-based and the unicursal route schemes through numerical simulations, we evaluate the advantage of our proposal.« less
  7. The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogenVibrio choleraetypically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions inV. choleraeand the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape inV. choleraeis regulated by the bacterial second messenger cyclic dimericmore »guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression ofcrvA, a gene encoding an intermediate filament-like protein necessary for curvature formation inV. cholerae.This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated withV. cholerae’s induction of sessility. During microcolony formation, wild-typeV. choleraecells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straightV. choleraemutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.

    « less
  8. One of the fundamental goals of chemistry is to determine how molecular structure influences interactions and leads to different reaction products. Studies of isomer-selected and resolved chemical reactions can shed light directly on how form leads to function. In the following, we present the results of gas-phase reactions between acetylene cations (C 2 D 2 + ) with two different isomers of C 3 H 4 : propyne (DC 3 D 3 ) and allene (H 2 C 3 H 2 ). Our highly controlled, trapped-ion environment allows for precise determination of reaction products and kinetics. From these results, wemore »can infer details of the underlying reaction dynamics of C 2 H 2 + + C 3 H 4 . Through the synergy of experimental results and high-level quantum chemical potential energy surface calculations, we are able to identify distinct reaction mechanisms for the two isomers. We find long-range charge exchange with no complex formation is favored for allene, whereas charge exchange leads to an intermediate reaction complex for propyne and thus, different products. Therefore, this reaction displays a pronounced isomer-selective bi-molecular reactive process.« less