skip to main content

Search for: All records

Creators/Authors contains: "Nguyen, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The study of light lensed by cosmic matter has yielded much information about astrophysical questions. Observations are explained using geometrical optics following a ray-based description of light. After deflection the lensed light interferes, but observing this diffractive aspect of gravitational lensing has not been possible due to coherency challenges caused by the finite size of the sources or lack of near-perfect alignment. In this article, we report on the observation of these wave effects of gravitational lensing by recreating the lensing conditions in the laboratory via electro-optic deflection of coherent laser light. The lensed light produces a beam containing regularities, caustics, and chromatic modulations of intensity that depend on the symmetry and structure of the lensing object. We were also able to observe previous and new geometric-optical lensing situations that can be compared to astrophysical observations. This platform could be a useful tool for testing numerical/analytical simulations, and for performing analog simulations of lensing situations when they are difficult to obtain otherwise. We found that laboratory lensed beams constitute a new class of beams, with long-range, low expansion, and self-healing properties, opening new possibilities for non-astrophysical applications.

    more » « less
  2. Andrews, D ; Galvez, E ; Rubinsztein-Dunlop (Ed.)
    Einstein beams are coherent optical beams generated by the conditions of gravitational lensing. In the ray picture, Einstein beams are formed by the intersection of light rays deflected by a lensing mass, similar to nondiffracting Bessel beams, but with the difference that adjacent rays diverge slightly. When accounting for the wave properties of light, they form beam-like diffraction patterns that preserve their shape but expand as the light propagates. The addition of a topological charge to the light, leads to more complex patterns carrying orbital angular momentum. For symmetric lensing conditions, Einstein beams carry modes described by confluent hypergeometric functions, which can be approximated by Bessel functions. A theoretical analysis of this is presented here. In astrophysical observations, many of these features can only be inferred because conditions of coherence and alignment make them difficult to observe. Studies of Einstein beams in the laboratory can be used to inform astrophysical observations and discover new non-astrophysical laboratory applications. 
    more » « less
  3. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
  4. Camps-Valls, G ; Ruiz, F. J. ; Valera, I. (Ed.)
  5. Abstract Purpose

    Crops rely on microbes for critical services, but host benefits can be influenced by local makeup of microbiota and the host’s capacity to select optimal strains. We investigated host benefits that cowpeas receive from microbiota depending on plant genotype, their domestication status, and soil source.


    We performed a full factorial soil inoculation experiment. Twenty diverse cowpea genotypes, selected from wild and domesticated populations, were exposed to soil rinsates from four agricultural sites across California, all having cowpea cultivation and varied physicochemical features. Cowpea investment in and benefit from microbiota was quantified by measuring host growth response to inoculation, nodulation, and segregating trait variation.


    Variation in induction of root nodulation and strikingly heterogenous benefits to host growth were observed among soil sites. These effects were restricted to live soil inocula but were absent in autoclaved soil controls that lacked microbiota. Cowpeas expressed heritable variation in nodulation, but there was negligible effect of plant population or domestication status on the net benefit that hosts gained from microbiota.


    Soils varied substantially and consistently among cultivation sites and were the most prominent driver shaping host growth effects on cowpeas. While growth benefits vary among host cultivars, soil microbiota (and the conditions that maintain them) predominantly shape plant performance in agricultural settings.

    more » « less