- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Nguyen, Thien H (4)
-
Nguyen, Minh V (2)
-
Dernoncourt, Franck (1)
-
Dou, Dejing (1)
-
Lai, Viet D (1)
-
Lu, Qiuhao (1)
-
Min, Bonan (1)
-
Nguyen, Huy L (1)
-
Veyseh, Amir P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce two complementary techniques for efficient optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) through step-size sharing. Subset-Norm (SN) reduces AdaGrad’s memory footprint from O(d) to O(sqrt(d)), where d is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian noise, we show a noise-adapted high-probability convergence guarantee with improved dimensional dependence of SN over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state’s memory footprint by restricting momentum to a low-dimensional subspace while performing SGD in the orthogonal complement. We prove a high-probability convergence result for Subspace-Momentum under standard assumptions. Empirical evaluation on pre-training and fine-tuning LLMs demonstrates the effectiveness of our methods. For instance, combining Subset-Norm with Subspace-Momentum achieves Adam’s validation perplexity for LLaMA 1B in approximately half the training tokens (6.8B vs 13.1B) while reducing Adam’s optimizer-states memory footprint by more than 80% with minimal additional hyperparameter tuning.more » « lessFree, publicly-accessible full text available July 13, 2026
-
Lu, Qiuhao; Nguyen, Thien H; Dou, Dejing (, Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR-2021))
-
Veyseh, Amir P; Nguyen, Minh V; Min, Bonan; Nguyen, Thien H (, The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021))
-
Lai, Viet D; Nguyen, Minh V; Nguyen, Thien H; Dernoncourt, Franck (, Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR-2021))
An official website of the United States government
