Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, with the advent of the Internet of everything and 5G network, the amount of data generated by various edge scenarios such as autonomous vehicles, smart industry, 4K/8K, virtual reality (VR), augmented reality (AR), etc., has greatly exploded. All these trends significantly brought real-time, hardware dependence, low power consumption, and security requirements to the facilities, and rapidly popularized edge computing. Meanwhile, artificial intelligence (AI) workloads also changed the computing paradigm from cloud services to mobile applications dramatically. Different from wide deployment and sufficient study of AI in the cloud or mobile platforms, AI workload performance and their resource impact on edges have not been well understood yet. There lacks an in-depth analysis and comparison of their advantages, limitations, performance, and resource consumptions in an edge environment. In this paper, we perform a comprehensive study of representative AI workloads on edge platforms. We first conduct a summary of modern edge hardware and popular AI workloads. Then we quantitatively evaluate three categories (i.e., classification, image-to-image, and segmentation) of the most popular and widely used AI applications in realistic edge environments based on Raspberry Pi, Nvidia TX2, etc. We find that interaction between hardware and neural network models incurs non-negligible impact and overheadmore »Free, publicly-accessible full text available November 11, 2023
-
Free, publicly-accessible full text available October 17, 2023
-
Free, publicly-accessible full text available October 12, 2023
-
A family of Zn 16 Ln(HA) 16 metallacrowns (MCs; Ln = Yb III , Er III , and Nd III ; HA = picoline- (picHA 2− ), pyrazine- (pyzHA 2− ), and quinaldine- (quinHA 2− ) hydroximates) with an ‘encapsulated sandwich’ structure possesses outstanding luminescence properties in the near-infrared (NIR) and suitability for cell imaging. Here, to decipher which parameters affect their functional and photophysical properties and how the nature of the hydroximate ligands can allow their fine tuning, we have completed this Zn 16 Ln(HA) 16 family by synthesizing MCs with two new ligands, naphthyridine- (napHA 2− ) and quinoxaline- (quinoHA 2− ) hydroximates. Zn 16 Ln(napHA) 16 and Zn 16 Ln(quinoHA) 16 exhibit absorption bands extended into the visible range and efficiently sensitize the NIR emissions of Yb III , Er III , and Nd III upon excitation up to 630 nm. The energies of the lowest singlet (S 1 ), triplet (T 1 ) and intra-ligand charge transfer (ILCT) states have been determined. Ln III -centered total ( Q LLn) and intrinsic ( Q LnLn) quantum yields, sensitization efficiencies ( η sens ), observed ( τ obs ) and radiative ( τ rad ) luminescence lifetimes havemore »
-
A new series of gallium( iii )/lanthanide( iii ) metallacrown (MC) complexes ( Ln-1 ) was synthesized by the direct reaction of salicylhydroxamic acid (H 3 shi) with Ga III and Ln III nitrates in a CH 3 OH/pyridine mixture. X-ray single crystal analysis revealed two types of structures depending on whether the nitrate counterion coordinate or not to the Ln III : [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 4 (NO 3 )](py) 2 (Ln = Gd III , Tb III , Dy III , Ho III ) and [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 5 ](NO 3 )(py) (Ln = Er III , Tm III , Yb III ). The representative Tb-1 and Yb-1 MCs consist of a Tb/YbGa 4 core with four [Ga III –N–O] repeating units forming a non-planar ring that coordinates the central Ln III through the oxygen atoms of the four shi 3− groups. Two H 2 shi − groups bridge the Ln III to the Ga III ring ions. The Yb III in Yb-1 is eight-coordinated while the ligation of the nine-coordinated Tb III in Tb-1 is completed by one chelating nitrate ion. Ln-1 complexes in the solidmore »