skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Vincent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we tackle an important task in computer vision: any view object recognition. In both training and testing, for each object instance, we are only given its 2D image viewed from an unknown angle. We propose a computational framework by designing object and viewer-centered neural networks (OVCNet) to recognize an object instance viewed from an arbitrary unknown angle. OVCNet consists of three branches that respectively implement object-centered, 3D viewer-centered, and in-plane viewer-centered recognition. We evaluate our proposed OVCNet using two metrics with unseen views from both seen and novel object instances. Experimental results demonstrate the advantages of OVCNet over classic 2D-image-based CNN classi fiers, 3D-object (inferred from 2D image) classifiers, and competing multi-view based approaches. It gives rise to a viable and practical computing framework that combines both viewpoint-dependent and viewpoint-independent features for object recognition from any view. 
    more » « less
  2. We make an attempt to address topology-awareness for 3D shape reconstruction. Two types of high-level shape typologies are being studied here, namely genus (number of cuttings/holes) and connectivity (number of connected components), which are of great importance in 3D object reconstruction/understanding but have been thus far disjoint from the existing dense voxel-wise prediction literature. We propose a topology-aware shape autoencoder component (TPWCoder) by approximating topology property functions such as genus and connectivity with neural networks from the latent variables. TPWCoder can be directly combined with the existing 3D shape reconstruction pipelines for end-to-end training and prediction. On the challenging A Big CAD Model Dataset (ABC), TPWCoder demonstrates a noticeable quantitative and qualitative improvement over the competing methods, and it also shows improved quantitative result on the ShapeNet dataset. 
    more » « less