skip to main content


Search for: All records

Creators/Authors contains: "Nguyen-Mau, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract Coherent production of J/ψ mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb −1 . The J/ψ mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2 . 0 < y < 4 . 5 is measured to be 4 . 45 ± 0 . 24 ± 0 . 18 ± 0 . 58 mb, where the first uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/ψ rapidity intervals. The results are compared to predictions from phenomenological models. 
    more » « less
  2. Abstract A search is performed for massive long-lived particles (LLPs) decaying semileptonically into a muon and two quarks. Two kinds of LLP production processes were considered. In the first, a Higgs-like boson with mass from 30 to 200 $$\text {\,GeV\!/}c^2$$ \,GeV\!/ c 2 is produced by gluon fusion and decays into two LLPs. The analysis covers LLP mass values from 10 $$\text {\,GeV\!/}c^2$$ \,GeV\!/ c 2 up to about one half the Higgs-like boson mass. The second LLP production mode is directly from quark interactions, with LLP masses from 10 to 90 $$\text {\,GeV\!/}c^2$$ \,GeV\!/ c 2 . The LLP lifetimes considered range from 5 to 200 ps. This study uses LHCb data collected from proton-proton collisions at $$\sqrt{s} = 13\text {\,TeV} $$ s = 13 \,TeV , corresponding to an integrated luminosity of 5.4 $$\text {\,fb} ^{-1}$$ \,fb - 1 . No evidence of these long-lived states has been observed, and upper limits on the production cross-section times branching ratio have been set for each model considered. 
    more » « less
  3. Abstract The standard model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown that a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton–proton collision data collected with the LHCb detector at CERN’s Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the standard model, such as a new fundamental interaction between quarks and leptons. 
    more » « less
  4. Abstract Mesons comprising a beauty quark and strange quark can oscillate between particle ( $${B}_{\mathrm{s}}^{0}$$ B s 0 ) and antiparticle ( $${\overline{B}}_{\mathrm{s}}^{0}$$ B ¯ s 0 ) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Δ m s . Here we present a measurement of Δ m s using $${B}_{\mathrm{s}}^{0}\to {D}_{\mathrm{s}}^{-}$$ B s 0 → D s − π + decays produced in proton–proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Δ m s  = 17.7683 ± 0.0051 ± 0.0032 ps −1 , where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Δ m s precision by a factor of two. We combine this result with previous LHCb measurements to determine Δ m s  = 17.7656 ± 0.0057 ps −1 , which is the legacy measurement of the original LHCb detector. 
    more » « less