skip to main content

Search for: All records

Creators/Authors contains: "Ni, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    For many animal species, vocal communication is a critical social behavior and often a necessary component of reproductive success. Additionally, vocalizations are often demanding motor acts. Wanting to know whether a specific molecular toolkit might be required for vocalization, we used RNA‐sequencing to investigate neural gene expression underlying the performance of an extreme vocal behavior, the courtship hum of the plainfin midshipman fish (Porichthys notatus). Single hums can last up to 2 h and may be repeated throughout an evening of courtship activity. We asked whether vocal behavioral states are associated with specific gene expression signatures in key brain regions that regulate vocalization by comparing transcript expression levels in humming versus non‐humming males. We find that the circadian‐related genesperiod3andClockare significantly upregulated in the vocal motor nucleus and preoptic area‐anterior hypothalamus, respectively, in humming compared with non‐humming males, indicating that internal circadian clocks may differ between these divergent behavioral states. In addition, we identify suites of differentially expressed genes related to synaptic transmission, ion channels and transport, neuropeptide and hormone signaling, and metabolism and antioxidant activity that together may support the neural and energetic demands of humming behavior. Comparisons of transcript expression across regions stress regional differences in brain gene expression, while also showing coordinated gene regulation in the vocal motor circuit in preparation for courtship behavior. These results underscore the role of differential gene expression in shifts between behavioral states, in this case neuroendocrine, motor and circadian control of courtship vocalization.

    more » « less
  3. null (Ed.)
    Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman ( Porichthys notatus ) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics. 
    more » « less
  4. Abstract

    Melatonin plays a central role in entraining activity to the day–night cycle in vertebrates. Here, we investigate neuroanatomical substrates of melatonin‐dependent vocal–acoustic behavior in the nocturnal and highly vocal teleost fish, the plainfin midshipman (Porichthys notatus). Using in situ hybridization (ISH) and quantitative real‐time PCR (qPCR), we assess the mRNA distribution and transcript abundance of melatonin receptor subtype 1B (mel1b), shown to be important for vocalization in midshipman fish and songbirds. ISH shows robustmel1bexpression in major nodes of the central vocal and auditory networks in the subpallium, preoptic area (POA), anterior hypothalamus, dorsal thalamus, posterior tuberculum, midbrain torus semicircularis and periaqueductal gray, and hindbrain.Mel1blabel is also abundant in secondary targets of the olfactory, visual, and lateral line systems, as well as telencephalic regions that have been compared to the amygdala, extended amygdala, striatum, septum, and hippocampus of tetrapods. Q‐PCR corroboratesmel1babundance throughout the brain and shows significant increases in the morning compared with nighttime in tissue samples inclusive of the telencephalon and POA, but remains stable in other brain regions. Plasma melatonin levels show expected increase at night. Our findings support the hypothesis that melatonin's stimulatory effects on vocal–acoustic mechanisms in midshipman is mediated, in part, by melatonin binding in vocal, auditory, and neuroendocrine centers. Together with robustmel1bexpression in multiple telencephalic nuclei and sensory systems, the results further indicate an expression pattern comparable to that in birds and mammals that is indicative of melatonin's broad involvement in the modulation of physiology and behavior.

    more » « less