skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nica, Emilian Marius"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the phase diagram of the Yao-Lee model with Kitaev-type spin-orbital interactions in the presence of Dzyaloshinskii-Moriya interactions and external magnetic fields. Unlike the Kitaev model, the Yao-Lee model can still be solved exactly under these perturbations due to the enlarged local Hilbert space. Through a variational analysis, we obtain a rich ground-state phase diagram that consists of a variety of vison crystals with periodic arrangements of background Z2 flux (i.e., visons). With an out-of-plane magnetic field, these phases have gapped bulk and chiral edge states, characterized by a Chern number ν and an associated chiral central charge c=ν/2 of edge states. We also find helical Majorana edge states that are protected by magnetic mirror symmetry. For the bilayer systems, we find that interlayer coupling can also stabilize new topological phases. Our results spotlight the tunability and the accompanying rich physics in exactly solvable spin-orbital generalizations of the Kitaev model. 
    more » « less
  2. Abstract

    We determine the phase diagram of a bilayer, Yao-Lee spin-orbital model with inter-layer interactions (J), for several stackings and moiré superlattices. For AA stacking, a gapped$${{\mathbb{Z}}}_{2}$$Z2quantum spin liquid phase emerges at a finiteJc. We show that this phase survives in the well-controlled large-Jlimit, where an isotropic honeycomb toric code emerges. For moiré superlattices, a finite-qinter-layer hybridization is stabilized. This connects inequivalent Dirac points, effectively ‘untwisting’ the system. Our study thus provides insight into the spin-liquid phases of bilayer spin-orbital Kitaev materials.

     
    more » « less