skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nichani, Eshan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We focus on the task of learning a single index model with respect to the isotropic Gaussian distribution in d dimensions. Prior work has shown that the sample complexity of learning the hidden direction is governed by the information exponent k of the link function. Ben Arous et al. showed that d^k samples suffice for learning and that this is tight for online SGD. However, the CSQ lowerbound for gradient based methods only shows that d^{k/2} samples are necessary. In this work, we close the gap between the upper and lower bounds by showing that online SGD on a smoothed loss learns the hidden direction with the correct number of samples. We also draw connections to statistical analyses of tensor PCA and to the implicit regularization effects of minibatch SGD on empirical losses. 
    more » « less