skip to main content


Search for: All records

Creators/Authors contains: "Nicolas, Julien P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The glaciers near Puncak Jaya in Papua, Indonesia, the highest peak between the Himalayas and the Andes, are the last remaining tropical glaciers in the West Pacific Warm Pool (WPWP). Here, we report the recent, rapid retreat of the glaciers near Puncak Jaya by quantifying the loss of ice coverage and reduction of ice thickness over the last 8 y. Photographs and measurements of a 30-m accumulation stake anchored to bedrock on the summit of one of these glaciers document a rapid pace in the loss of ice cover and a ∼5.4-fold increase in the thinning rate, which was augmented by the strong 2015–2016 El Niño. At the current rate of ice loss, these glaciers will likely disappear within the next decade. To further understand the mechanisms driving the observed retreat of these glaciers, 2 ∼32-m-long ice cores to bedrock recovered in mid-2010 are used to reconstruct the tropical Pacific climate variability over approximately the past half-century on a quasi-interannual timescale. The ice core oxygen isotopic ratios show a significant positive linear trend since 1964 CE (0.018 ± 0.008‰ per year;P< 0.03) and also suggest that the glaciers’ retreat is augmented by El Niño–Southern Oscillation processes, such as convection and warming of the atmosphere and sea surface. These Papua glaciers provide the only tropical records of ice core-derived climate variability for the WPWP.

     
    more » « less
  2. Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.

     
    more » « less
  3. The Ross Ice Shelf (RIS) buttresses ice streams from the Antarctic continent and restrains the grounded ice sheet from flowing into the ocean, which is important for the stability of the ice sheet. In recent decades, West Antarctic ice shelves, including the RIS, have experienced more frequent surface melting during summer. We investigated the role of warm, descending föhn winds in a major melt event that occurred on the RIS in January 2016. Only a few summer melt events of this magnitude have been observed since 1979. Backward trajectories from the area of earliest melting were constructed using the Antarctic Mesoscale Prediction System to investigate the dominant mechanisms at the beginning of the melt event, mainly from 10 to 13 January. Analysis was conducted over two distinct areas. The föhn effect contributed around 2–4 °C to the surface temperature increase over the coastal mountains of Marie Byrd Land and around 1 °C over the much lower Edward VII Peninsula. Most of the föhn warming was caused by isentropic drawdown of air aloft. On 10 January, the second‐most important contributor for both mountain ranges was the thermodynamic mechanism. On 11 January, the second‐most important mechanism was the sensible and radiative heat flux. This study contributes to a better understanding of surface melt events over the RIS and benefits research associated with the stability of West Antarctic ice shelves.

     
    more » « less
  4. null (Ed.)
  5. Dunn, Robert J. ; Stanitski, Diane M. ; Gobron, Nadine ; Willett, Kate M. (Ed.)