skip to main content

Search for: All records

Creators/Authors contains: "Nieto, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Flat-spectrum radio quasars (FSRQs) are the most luminous blazars at GeV energies but only rarely emit detectable fluxes of TeV gamma rays, typically during bright GeV flares. We explore the gamma-ray variability and spectral characteristics of three FSRQs that have been observed at GeV and TeV energies by Fermi-LAT and VERITAS, making use of almost 100 hr of VERITAS observations spread over 10 yr: 3C 279, PKS 1222+216, and Ton 599. We explain the GeV flux distributions of the sources in terms of a model derived from a stochastic differential equation describing fluctuations in the magnetic field in the accretion disk and estimate the timescales of magnetic flux accumulation and stochastic instabilities in their accretion disks. We identify distinct flares using a procedure based on Bayesian blocks and analyze their daily and subdaily variability and gamma-ray energy spectra. Using observations from VERITAS, as well as Fermi, Swift, and the Steward Observatory, we model the broadband spectral energy distributions of PKS 1222+216 and Ton 599 during very high energy (VHE)–detected flares in 2014 and 2017, respectively, strongly constraining the jet Doppler factors and gamma-ray emission region locations during these events. Finally, we place theoretical constraints on the potential production ofmore »PeV-scale neutrinos during these VHE flares.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Marshall, Heather K. ; Spyromilio, Jason ; Usuda, Tomonori (Ed.)
    The novel 9.7m Schwarzschild-Couder Telescope (SCT), utilizing aspheric dual-mirror optical system, has been constructed as a prototype medium size x-ray telescope for the Cherenkov Telescope Array (CTA) observatory. The prototype SCT (pSCT) is designed to achieve simultaneously the wide (≥ 8°) field of view and the superior imaging resolution (0.067 per pixel) to significantly improve scientific capabilities of the observatory in conducting the sky surveys, the follow-up observations of multi-messenger transients with poorly known initial localization and the morphology studies of x-ray sources with angular extent. In this submission, we describe the hardware and software implementations of the telescope optical system as well as the methods specifically developed to align its complex optical system, in which both primary and secondary mirrors are segmented. The pSCT has detected Crab Nebula in June 2020 during ongoing commissioning, which was delayed due to worldwide pandemic and is not yet completed. Verification of pSCT performance is continuing and further improvement of optical alignment is anticipated.