Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The data precision can significantly affect the accuracy and overhead metrics of hardware accelerators for different applications such as artificial neural networks (ANNs). This paper evaluates the inference and training of multi-layer perceptrons (MLPs), in which initially IEEE standard floating-point (FP) precisions (half, single and double) are utilized separately and then compared with mixed-precision FP formats. The mixed-precision calculations are investigated for three critical propagation modules (activation functions, weight updates, and accumulation units). Compared with applying a simple low-precision format, the mixed-precision format prevents an accuracy loss and the occurrence of overflow/underflow in the MLPs while potentially incurring in less hardware overhead in terms of area/power. As the multiply-accumulation is the most dominant operation in trending ANNs, a fully pipelined hardware implementation for the fused multiply-add units is proposed for different IEEE FP formats to achieve a very high operating frequency.more » « less
-
null (Ed.)With the outsourcing of design flow, ensuring the security and trustworthiness of integrated circuits has become more challenging. Among the security threats, IC counterfeiting and recycled ICs have received a lot of attention due to their inferior quality, and in turn, their negative impact on the reliability and security of the underlying devices. Detecting recycled ICs is challenging due to the effect of process variations and process drift occurring during the chip fabrication. Moreover, relying on a golden chip as a basis for comparison is not always feasible. Accordingly, this paper presents a recycled IC detection scheme based on delay side-channel testing. The proposed method relies on the features extracted during the design flow and the sample delays extracted from the target chip to build a Neural Network model using which the target chip can be truly identified as new or recycled. The proposed method classifies the timing paths of the target chip into two groups based on their vulnerability to aging using the information collected from the design and detects the recycled ICs based on the deviation of the delay of these two sets from each other.more » « less