skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nima, Jose Pomarino"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over-activation of the epidermal growth factor receptor (EGFR) is a hallmark of glioblastoma. However, EGFR-targeted therapies have led to minimal clinical response. While delivery of EGFR inhibitors (EGFRis) to the brain constitutes a major challenge, how additional drug-specific features alter efficacy remains poorly understood. We apply highly multiplex single-cell chemical genomics to define the molecular response of glioblastoma to EGFRis. Using a deep generative framework, we identify shared and drug-specific transcriptional programs that group EGFRis into distinct molecular classes. We identify programs that differ by the chemical properties of EGFRis, including induction of adaptive transcription and modulation of immunogenic gene expression. Finally, we demonstrate that pro-immunogenic expression changes associated with a subset of tyrphostin family EGFRis increase the ability of cytotoxic T-cells to eradicate tumor cells. Our study provides a framework that considers each agent’s unique and often unknown poly-pharmacology to prioritize compounds that induce clinically favorable molecular responses. 
    more » « less