- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000100001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Feng, Chen (2)
-
Niu, Jianyu (2)
-
Beschastnikh, Ivan (1)
-
Busch, Costas (1)
-
Jalalzai, Mohammad Mussadiq (1)
-
Lyu, Hanzheng (1)
-
Richard III, Golden (1)
-
Sadoghi, Mohammad (1)
-
Xie, Shaokang (1)
-
Zhang, Yinqian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Jalalzai, Mohammad Mussadiq; Feng, Chen; Busch, Costas; Richard III, Golden; Niu, Jianyu (, IEEE Transactions on Dependable and Secure Computing)The performance of partially synchronous BFT-based consensus protocols is highly dependent on the primary node. All participant nodes in the network are blocked until they receive a proposal from the primary node to begin the consensus process. Therefore, an honest but slack node (with limited bandwidth) can adversely affect the performance when selected as primary. Hermes decreases protocol dependency on the primary node and minimizes transmission delay induced by the slack primary while keeping low message complexity and latency with high scalability. Hermes achieves these performance improvements by relaxing strong BFT agreement (safety) guarantees only for a specific type of Byzantine faults (also called equivocated faults). Interestingly, we show that in Hermes equivocating by a Byzantine primary is expensive and ineffective. Therefore, the safety of Hermes is comparable to the general BFT consensus. We deployed and tested Hermes on 190 Amazon EC2 instances. In these tests, Hermes's performance was comparable to the state-of-the-art BFT protocol for blockchains (when the network size is large) in the absence of slack nodes. Whereas, in the presence of slack nodes, Hermes outperforms the state-of-the-art BFT protocol significantly in terms of throughput and latency.more » « less
An official website of the United States government
