skip to main content


Search for: All records

Creators/Authors contains: "Niu, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The presence of incomplete cuts in a thin planar sheet can dramatically alter its mechanical and geometrical response to loading, as the cuts allow the sheet to deform strongly in the third dimension, most beautifully demonstrated in kirigami art-forms. We use numerical experiments to characterize the geometric mechanics of kirigamized sheets as a function of the number, size and orientation of cuts. We show that the geometry of mechanically loaded sheets can be approximated as a composition of simple developable units: flats, cylinders, cones and compressed Elasticae. This geometric construction yields scaling laws for the mechanical response of the sheet in both the weak and strongly deformed limit. In the ultimately stretched limit, this further leads to a theorem on the nature and form of geodesics in an arbitrary kirigami pattern, consistent with observations and simulations. Finally, we show that by varying the shape and size of the geodesic in a kirigamized sheet, we can control the deployment trajectory of the sheet, and thence its functional properties as an exemplar of a tunable structure that can serve as a robotic gripper, a soft light window or the basis for a physically unclonable device. Overall our study of disordered kirigami sets the stage for controlling the shape and shielding the stresses in thin sheets using cuts. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Prior work on automatic control synthesis for cyberphysical systems under logical constraints has primarily focused on environmental disturbances or modeling uncertainties, however, the impact of deliberate and malicious attacks has been less studied. In this paper, we consider a discrete-time dynamical system with a linear temporal logic (LTL) constraint in the presence of an adversary, which is modeled as a stochastic game. We assume that the adversary observes the control policy before choosing an attack strategy. We investigate two problems. In the first problem, we synthesize a robust control policy for the stochastic game that maximizes the probability of satisfying the LTL constraint. A value iteration based algorithm is proposed to compute the optimal control policy. In the second problem, we focus on a subclass of LTL constraints, which consist of an arbitrary LTL formula and an invariant constraint. We then investigate the problem of computing a control policy that minimizes the expected number of invariant constraint violations while maximizing the probability of satisfying the arbitrary LTL constraint. We characterize the optimality condition for the desired control policy. A policy iteration based algorithm is proposed to compute the control policy. We illustrate the proposed approaches using two numerical case studies. 
    more » « less
  3. In this work, we consider an LTI system with a Kalman filter, detector, and Linear Quadratic Gaussian (LQG) controller under false data injection attack. The interaction between the controller and adversary is captured by a Stackelberg game, in which the controller is the leader and the adversary is the follower. We propose a framework under which the system chooses time-varying detection thresholds to reduce the effectiveness of the attack and enhance the control performance. We model the impact of the detector as a switching signal, resulting in a switched linear system. A closed form solution for the optimal attack is first computed using the proposed framework, as the best response to any detection threshold. We then present a convex program to compute the optimal detection threshold. Our approach is evaluated using a numerical case study. 
    more » « less
  4. Control systems are increasingly targeted by malicious adversaries, who may inject spurious sensor measurements in order to bias the controller behavior and cause suboptimal performance or safety violations. This paper investigates the problem of tracking a reference trajectory while satisfying safety and reachability constraints in the presence of such false data injection attacks. We consider a linear, time-invariant system with additive Gaussian noise in which a subset of sensors can be compromised by an attacker, while the remaining sensors are regarded as secure. We propose a control policy in which two estimates of the system state are maintained, one based on all sensors and one based on only the secure sensors. The optimal control action based on the secure sensors alone is then computed at each time step, and the chosen control action is constrained to lie within a given distance of this value. We show that this policy can be implemented by solving a quadraticallyconstrained quadratic program at each time step. We develop a barrier function approach to choosing the parameters of our scheme in order to provide provable guarantees on safety and reachability, and derive bounds on the probability that our control policies deviate from the optimal policy when no attacker is present. Our framework is validated through numerical study. 
    more » « less
  5. This paper studies the satisfaction of a class of temporal properties for cyber-physical systems (CPSs) over a finite-time horizon in the presence of an adversary, in an environment described by discretetime dynamics. The temporal logic specification is given in safe−LTLF , a fragment of linear temporal logic over traces of finite length. The interaction of the CPS with the adversary is modeled as a two-player zerosum discrete-time dynamic stochastic game with the CPS as defender. We formulate a dynamic programming based approach to determine a stationary defender policy that maximizes the probability of satisfaction of a safe − LTLF formula over a finite time-horizon under any stationary adversary policy. We introduce secure control barrier certificates (S-CBCs), a generalization of barrier certificates and control barrier certificates that accounts for the presence of an adversary, and use S-CBCs to provide a lower bound on the above satisfaction probability. When the dynamics of the evolution of the system state has a specific underlying structure, we present a way to determine an S-CBC as a polynomial in the state variables using sum-of-squares optimization. An illustrative example demonstrates our approach. 
    more » « less
  6. Cyber-physical systems are conducting increasingly complex tasks, which are often modeled using formal languages such as temporal logic. The system’s ability to perform the required tasks can be curtailed by malicious adversaries that mount intelligent attacks. At present, however, synthesis in the presence of such attacks has received limited research attention. In particular, the problem of synthesizing a controller when the required specifications cannot be satisfied completely due to adversarial attacks has not been studied. In this paper, we focus on the minimum violation control synthesis problem under linear temporal logic constraints of a stochastic finite state discrete-time system with the presence of an adversary. A minimum violation control strategy is one that satisfies the most important tasks defined by the user while violating the less important ones. We model the interaction between the controller and adversary using a concurrent Stackelberg game and present a nonlinear programming problem to formulate and solve for the optimal control policy. To reduce the computation effort, we develop a heuristic algorithm that solves the problem efficiently and demonstrate our proposed approach using a numerical case study. 
    more » « less