skip to main content


Search for: All records

Creators/Authors contains: "Nixon, Kent W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the past decade, Deep Neural Networks (DNNs), e.g., Convolutional Neural Networks, achieved human-level performance in vision tasks such as object classification and detection. However, DNNs are known to be computationally expensive and thus hard to be deployed in real-time and edge applications. Many previous works have focused on DNN model compression to obtain smaller parameter sizes and consequently, less computational cost. Such methods, however, often introduce noticeable accuracy degradation. In this work, we optimize a state-of-the-art DNN-based video detection framework—Deep Feature Flow (DFF) from the cloud end using three proposed ideas. First, we propose Asynchronous DFF (ADFF) to asynchronously execute the neural networks. Second, we propose a Video-based Dynamic Scheduling (VDS) method that decides the detection frequency based on the magnitude of movement between video frames. Last, we propose Spatial Sparsity Inference, which only performs the inference on part of the video frame and thus reduces the computation cost. According to our experimental results, ADFF can reduce the bottleneck latency from 89 to 19 ms. VDS increases the detection accuracy by 0.6% mAP without increasing computation cost. And SSI further saves 0.2 ms with a 0.6% mAP degradation of detection accuracy. 
    more » « less
  2. Deep Neural Networks (DNNs) have shown phenomenal success in a wide range of real-world applications. However, a concerning weakness of DNNs is that they are vulnerable to adversarial attacks. Although there exist methods to detect adversarial attacks, they often suffer constraints on specific attack types and provide limited information to downstream systems. We specifically note that existing adversarial detectors are often binary classifiers, which differentiate clean or adversarial examples. However, detection of adversarial examples is much more complicated than such a scenario. Our key insight is that the confidence probability of detecting an input sample as an adversarial example will be more useful for the system to properly take action to resist potential attacks. In this work, we propose an innovative method for fast confidence detection of adversarial attacks based on integrity of sensor pattern noise embedded in input examples. Experimental results show that our proposed method is capable of providing a confidence distribution model of most of popular adversarial attacks. Furthermore, our presented method can provide early attack warning with even the attack types based on different properties of the confidence distribution models. Since fast confidence detection is a computationally heavy task, we propose an FPGA-Based hardware architecture based on a series of optimization techniques, such as incremental multi-level quantization and etc. We realize our proposed method on an FPGA platform and achieve a high efficiency of 29.740 IPS/W with a power consumption of only 0.7626W. 
    more » « less
  3. Neural networks hold a critical domain in machine learning algorithms because of their self-adaptiveness and state-of-the-art performance. Before the testing (inference) phases in practical use, sophisticated training (learning) phases are required, calling for efficient training methods with higher accuracy and shorter converging time. Many existing studies focus on the training optimization on high-performance servers or computing clusters, e.g. GPU clusters. However, training neural networks on resource-constrained devices, e.g. mobile platforms, is an important research topic barely touched. In this paper, we implement AdaLearner–an adaptive distributed mobile learning system for neural networks that trains a single network with heterogenous mobile resources under the same local network in parallel. To exploit the potential of our system, we adapt neural networks training phase to mobile device-wise resources and fiercely decrease the transmission overhead for better system scalability. On three representative neural network structures trained from two image classification datasets, AdaLearner boosts the training phase significantly. For example, on LeNet, 1.75-3.37⇥ speedup is achieved when increasing the worker nodes from 2 to 8, thanks to the achieved high execution parallelism and excellent scalability. 
    more » « less
  4. Deep Neural Networks (DNNs) are pervasively used in a significant number of applications and platforms. To enhance the execution efficiency of large-scale DNNs, previous attempts focus mainly on client-server paradigms, relying on powerful external infrastructure, or model compression, with complicated pre-processing phases. Though effective, these methods overlook the optimization of DNNs on distributed mobile devices. In this work, we design and implement MeDNN, a local distributed mobile computing system with enhanced partitioning and deployment tailored for large-scale DNNs. In MeDNN, we first propose Greedy Two Dimensional Partition (GTDP), which can adaptively partition DNN models onto several mobile devices w.r.t. individual resource constraints. We also propose Structured Model Compact Deployment (SMCD), a mobile-friendly compression scheme which utilizes a structured sparsity pruning technique to further accelerate DNN execution. Experimental results show that, GTDP can accelerate the original DNN execution time by 1.86 – 2.44⇥ with 2 – 4 worker nodes. By utilizing SMCD, 26.5% of additional computing time and 14.2% of extra communication time are saved, on average, with negligible effect on the model accuracy. 
    more » « less