Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 23, 2025
-
Molecular Ag(II) complexes are superoxidizing photoredox catalysts capable of generating radicals from redox-reticent substrates. In this work, we exploited the electrophilicity of Ag(II) centers in [Ag(bpy)2(TFA)][OTf] and Ag(bpy)(TFA)2(bpy, 2,2′-bipyridine; OTf, CF3SO3–) complexes to activate trifluoroacetate (TFA) by visible light–induced homolysis. The resulting trifluoromethyl radicals may react with a variety of arenes to forge C(sp2)–CF3bonds. This methodology is general and extends to other perfluoroalkyl carboxylates of higher chain length (RFCO2–; RF, CF2CF3or CF2CF2CF3). The photoredox reaction may be rendered electrophotocatalytic by regenerating the Ag(II) complexes electrochemically during irradiation. Electrophotocatalytic perfluoroalkylation of arenes at turnover numbers exceeding 20 was accomplished by photoexciting the Ag(II)–TFA ligand-to-metal charge transfer (LMCT) state, followed by electrochemical reoxidation of the Ag(I) photoproduct back to the Ag(II) photoreactant.more » « less
-
Abstract Electrochemical approaches to form C(sp2)−C(sp3) bonds have focused on coupling C(sp3) electrophiles that form stabilized carbon‐centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp3) coupling partners owing to their availability and cost‐effectiveness, their tendency to undergo radical‐radical homocoupling makes them challenging substrates for electroreductive cross‐coupling. Herein, we disclose a metal‐free regioselective cross‐coupling of 1,4‐dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides. Alkyl bromide reduction is mediated directly by 1,4‐dicyanobenzene radical anions, leading to negligible homocoupling and high cross‐selectivity to form 1,4‐alkyl cyanobenzenes. The cross‐coupling scheme is compatible with oxidatively sensitive and acidic functional groups such as amines and alcohols, which have proven difficult to incorporate in alternative electrochemical approaches using carboxylic acids as C(sp3) precursors.more » « less
-
Chlorine radicals readily activate C-H bonds, but the high reactivity of these intermediates precludes their use in regioselective C-H functionalization reactions. We demonstrate that the secondary coordination sphere of a metal complex can confine photoeliminated chlorine radicals and afford steric control over their reactivity. Specifically, a series of iron(III) chloride pyridinediimine complexes exhibit activity for photochemical C(sp(3))-H chlorination and bromination with selectivity for primary and secondary C-H bonds, overriding thermodynamic preference for weaker tertiary C-H bonds. Transient absorption spectroscopy reveals that Cl center dot remains confined through formation of a Cl center dot larene complex with aromatic groups on the pyridinediimine ligand. Furthermore, photocrystallography confirms that this selectivity arises from the generation of Cl center dot within the steric environment defined by the iron secondary coordination sphere.more » « less