skip to main content


Search for: All records

Creators/Authors contains: "Noginov, Mikhail A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We have studied reflection spectra of dye-doped and undoped polymers deposited onto Ag and Au substrates and found anomalous dips in the UV spectral range. On top of Ag substrates, the λ ∼ 375 nm dips were observed in undoped PMMA, PVP, and PS polymers as well as PMMA doped with Rh590 and HITC laser dyes. In silver-based samples, the spectral positions of the observed reflection dips were close to singularities in the refractive indexes of surface plasmon polaritons (SPPs) propagating at the interface between Ag and polymer. The latter singularities can tentatively explain the λ ∼ 375 nm reflection dips, if the scattering of Ag and polymeric films is large enough to launch SPP without any prism or grating. The dips observed in reflection of Rh590:PMMA and HITC:PMMA on top of Au, were more pronounced than those on Ag, broader, shifted to shorter wavelengths, and their spectral positions had large standard deviations. Furthermore, no anomalous dips in gold-based samples were observed in the reflection spectra of undoped PMMA, PVP, and PS polymers, and a modest singularity in the SPP refractive index, predicted theoretically at λ ∼ 500 nm, cannot explain the dips in the UV reflection spectra observed experimentally. It appears likely that the origin of the reflection dips on top of Au substrates is different from that on top of Ag substrates. 
    more » « less
  2. Abstract We have grown arrays of silver nanowires in pores of anodic alumina membranes (metamaterials with hyperbolic dispersion at λ  ≥ 615 nm), spin coated them with the dye-doped polymer (HITC:PMMA), and studied the rates of radiative and nonradiative relaxation as well as the concentration quenching (Förster energy transfer to acceptors). The results were compared to those obtained on top of planar Ag films and glass (control samples). The strong spatial inhomogeneity of emission kinetics recorded in different spots across the sample and strong inhibition of the concentration quenching in arrays of Ag nanowires are among the most significant findings of this study. 
    more » « less
  3. null (Ed.)
    Abstract We have studied optical properties of single-layer and multi-fold nanoporous gold leaf (NPGL) metamaterials and observed highly unusual transmission spectra composed of two well-resolved peaks. We explain this phenomenon in terms of a surface plasmon absorption band positioned on the top of a broader transmission band, the latter being characteristic of both homogeneous “solid” and inhomogeneous “diluted” Au films. The transmission spectra of NPGL metamaterials were shown to be controlled by external dielectric environments, e.g. water and applied voltage in an electrochemical cell. This paves the road to numerous functionalities of the studied tunable and active metamaterials, including control of spontaneous emission, energy transfer and many others. 
    more » « less
  4. Abstract We have studied the dependence of concentration quenching of luminescence (donor–acceptor energy transfer) on the thickness d of dye-doped polymeric films (HITC:PMMA) and found its strong inhibition at small values of d . This phenomenon is tentatively explained by a limited number of acceptors, which donors’ excitation can reach in thin samples, if the film’s thickness is comparable to the diffusion length of the energy transfer. The latter mechanism, along with effective reduction of the dye concentration, is responsible for an inhibition of the concentration quenching of dye molecules impregnating porous alumina membranes. The elongation of emission kinetics in thick (≥3 μm) HITC:PMMA films is cautiously attributed to the samples’ crystallinity. 
    more » « less
  5. Abstract

    Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence ofL‐andD‐CDots obtained by hydrothermal carbonization ofL‐andD‐cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon‐based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.

     
    more » « less
  6. We have studied spectra and angular distribution of emission in Fabry–Perot cavities formed by two silver mirrors separated by a layer of poly (methyl methacrylate) polymer doped with rhodamine 6G (R6G) dye in low (20g/l) and high (200g/l) concentrations. The frequency of emission radiated to a cavity mode was larger at large outcoupling angles—the “rainbow” effect. At the same time, the angle of the strongest emission was also determined by the cavity size: the larger the cavity, the larger the angle. The angular distribution of emission is commonly dominated by two symmetrical lobes (located at the intersection of the three-dimensional emission cone with a horizontal plane) pointing to the left and to the right of the normal to the sample. Despite the strong Stokes shift in R6G dye, the branch of the cavity dispersion curve obtained in the emission experiment is positioned above the one obtained in the reflection (extinction) experiment. Some dye molecules are poorly coupled to cavity modes. Their emission has very broad angular distribution with the maximum atθ<#comment/>=0∘<#comment/>. The signatures of strong cavity–exciton coupling were observed at high dye concentration (200g/l) but not at low concentration (20g/l). The evidence of the effect of strong coupling on emission is exemplified by a strong difference in the angular distribution of emission in two almost identical cavities, one with and another without strong coupling. Most importantly, we have demonstrated the possibility to control the ground state concentration, the coupling strength, and the dye emission spectra with Q-switched laser pulses.

     
    more » « less
  7. null (Ed.)
    We have studied emission kinetics of HITC laser dye on top of glass, smooth Au films, and randomly structured porous Au nanofoams. The observed concentration quenching of luminescence of highly concentrated dye on top of glass (energy transfer to acceptors) and the inhibition of the concentration quenching in vicinity of smooth Au films were in accord with our recent findings. Intriguingly, the emission kinetics recorded in different local spots of the Au nanofoam samples had a spread of the decay rates, which was large at low dye concentrations and became narrower with increase of the dye concentration. We infer that in different subvolumes of Au nanofoams, HITC molecules are coupled to the nanofoams weaker or stronger. The inhibition of the concentration quenching in Au nanofoams was stronger than on top of smooth Au films. This was true for all weakly and strongly coupled subvolumes contributing to the spread of the emission kinetics. The experimental observations were explained using theoretical model accounting for change in the Förster radius caused by the strong energy transfer to metal. 
    more » « less
  8. We have studied spectra and angular distribution of emission of Rhodamine 6G dye in Fabry-Perot cavities in weak and strong coupling regimes, and demonstrated control of the strong coupling with the pumping intensity. 
    more » « less