skip to main content


Search for: All records

Creators/Authors contains: "Noh, Hae Young"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantitative analysis of human gait is critical for the early discovery, progressive tracking, and rehabilitation of neurological and musculoskeletal disorders, such as Parkinson’s disease, stroke, and cerebral palsy. Gait analysis typically involves estimating gait characteristics, such as spatiotemporal gait parameters and gait health indicators (e.g., step time, length, symmetry, and balance). Traditional methods of gait analysis involve the use of cameras, wearables, and force plates but are limited in operational requirements when applied in daily life, such as direct line-of-sight, carrying devices, and dense deployment. This paper introduces a novel approach for gait analysis by passively sensing floor vibrations generated by human footsteps using vibration sensors mounted on the floor surface. Our approach is low-cost, non-intrusive, and perceived as privacy-friendly, making it suitable for continuous gait health monitoring in daily life. Our algorithm estimates various gait parameters that are used as standard metrics in medical practices, including temporal parameters (step time, stride time, stance time, swing time, double-support time, and single-support time), spatial parameters (step length, width, angle, and stride length), and extracts gait health indicators (cadence/walking speed, left–right symmetry, gait balance, and initial contact types). The main challenge we addressed in this paper is the effect of different floor types on the resultant vibrations. We develop floor-adaptive algorithms to extract features that are generalizable to various practical settings, including homes, hospitals, and eldercare facilities. We evaluate our approach through real-world walking experiments with 20 adults with 12,231 labeled gait cycles across concrete and wooden floors. Our results show 90.5% (RMSE 0.08s), 71.3% (RMSE 0.38m), and 92.3% (RMSPE 7.7%) accuracy in estimating temporal, spatial parameters, and gait health indicators, respectively.

     
    more » « less
    Free, publicly-accessible full text available April 13, 2025
  2. Limongelli, Maria Pina ; Ng, Ching Tai ; Glisic, Branko (Ed.)
    Free, publicly-accessible full text available May 9, 2025
  3. Free, publicly-accessible full text available June 13, 2025
  4. Abstract

    Muscular dystrophies (MD) are a group of genetic neuromuscular disorders that cause progressive weakness and loss of muscles over time, influencing 1 in 3500–5000 children worldwide. New and exciting treatment options have led to a critical need for a clinical post-marketing surveillance tool to confirm the efficacy and safety of these treatments after individuals receive them in a commercial setting. For MDs, functional gait assessment is a common approach to evaluate the efficacy of the treatments because muscle weakness is reflected in individuals’ walking patterns. However, there is little incentive for the family to continue to travel for such assessments due to the lack of access to specialty centers. While various existing sensing devices, such as cameras, force plates, and wearables can assess gait at home, they are limited by privacy concerns, area of coverage, and discomfort in carrying devices, which is not practical for long-term, continuous monitoring in daily settings. In this study, we introduce a novel functional gait assessment system using ambient floor vibrations, which is non-invasive and scalable, requiring only low-cost and sparsely deployed geophone sensors attached to the floor surface, suitable for in-home usage. Our system captures floor vibrations generated by footsteps from patients while they walk around and analyzes such vibrations to extract essential gait health information. To enhance interpretability and reliability under various sensing scenarios, we translate the signal patterns of floor vibration to pathological gait patterns related to MD, and develop a hierarchical learning algorithm that aggregates insights from individual footsteps to estimate a person’s overall gait performance. When evaluated through real-world experiments with 36 subjects (including 15 patients with MD), our floor vibration sensing system achieves a 94.8% accuracy in predicting functional gait stages for patients with MD. Our approach enables accurate, accessible, and scalable functional gait assessment, bringing MD progressive tracking into real life.

     
    more » « less
  5. Free, publicly-accessible full text available December 1, 2024
  6. Optical metamaterials manipulate light through various confinement and scattering processes, offering unique advantages like high performance, small form factor and easy integration with semiconductor devices. However, designing metasurfaces with suitable optical responses for complex metamaterial systems remains challenging due to the exponentially growing computation cost and the ill‐posed nature of inverse problems. To expedite the computation for the inverse design of metasurfaces, a physics‐informed deep learning (DL) framework is used. A tandem DL architecture with physics‐based learning is used to select designs that are scientifically consistent, have low error in design prediction, and accurate reconstruction of optical responses. The authors focus on the inverse design of a representative plasmonic device and consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. The physics‐based constraint is derived from solving the electromagnetic wave equations for a simplified homogenized model. The model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input, and up to 96% for optical response of single wavelength of light as input, with optical response reconstruction accuracy of 99%.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  7. Free, publicly-accessible full text available November 15, 2024
  8. Precision Swine Farming has the potential to directly benefit swine health and industry profit by automatically monitoring the growth and health of pigs. We introduce the first system to use structural vibration to track animals and the first system for automated characterization of piglet group activities, including nursing, sleeping, and active times. PigSense uses physical knowledge of the structural vibration characteristics caused by pig-activity-induced load changes to recognize different behaviors of the sow and piglets. For our system to survive the harsh environment of the farrowing pen for three months, we designed simple, durable sensors for physical fault tolerance, then installed many of them, pooling their data to achieve algorithmic fault tolerance even when some do stop working. The key focus of this work was to create a robust system that can withstand challenging environments, has limited installation and maintenance requirements, and uses domain knowledge to precisely detect a variety of swine activities in noisy conditions while remaining flexible enough to adapt to future activities and applications. We provided an extensive analysis and evaluation of all-round swine activities and scenarios from our one-year field deployment across two pig farms in Thailand and the USA. To help assess the risk of crushing, farrowing sicknesses, and poor maternal behaviors, PigSense achieves an average of 97.8% and 94% for sow posture and motion monitoring, respectively, and an average of 96% and 71% for ingestion and excretion detection. To help farmers monitor piglet feeding, starvation, and illness, PigSense achieves an average of 87.7%, 89.4%, and 81.9% in predicting different levels of nursing, sleeping, and being active, respectively. In addition, we show that our monitoring of signal energy changes allows the prediction of farrowing in advance, as well as status tracking during the farrowing process and on the occasion of farrowing issues. Furthermore, PigSense also predicts the daily pattern and weight gain in the lactation cycle with 89% accuracy, a metric that can be used to monitor the piglets’ growth progress over the lactation cycle.

     
    more » « less
  9. Optical metamaterials manipulate light through various confinement and scattering processes, offering unique advantages like high performance, small form factor and easy integration with semiconductor devices. However, designing metasurfaces with suitable optical responses for complex metamaterial systems remains challenging due to the exponentially growing computation cost and the ill-posed nature of inverse problems. To expedite the computation for the inverse design of metasurfaces, a physics-informed deep learning (DL) framework is used. A tandem DL architecture with physics-based learning is used to select designs that are scientifically consistent, have low error in design prediction, and accurate reconstruction of optical responses. The authors focus on the inverse design of a representative plasmonic device and consider the prediction of design for the optical response of a single wavelength incident or a spectrum of wavelength in the visible light range. The physics-based constraint is derived from solving the electromagnetic wave equations for a simplified homogenized model. The model converges with an accuracy up to 97% for inverse design prediction with the optical response for the visible light spectrum as input, and up to 96% for optical response of single wavelength of light as input, with optical response reconstruction accuracy of 99%. 
    more » « less
  10. In this paper, we present a multiple concurrent occupant identification approach through footstep-induced floor vibration sensing. Identification of human occupants is useful in a variety of indoor smart structure scenarios, with applications in building security, space allocation, and healthcare. Existing approaches leverage sensing modalities such as vision, acoustic, RF, and wearables, but are limited due to deployment constraints such as line-of-sight requirements, sensitivity to noise, dense sensor deployment, and requiring each walker to wear/carry a device. To overcome these restrictions, we use footstep-induced structural vibration sensing. Footstep-induced signals contain information about the occupants' unique gait characteristics, and propagate through the structural medium, which enables sparse and passive identification of indoor occupants. The primary research challenge is that multiple-person footstep-induced vibration responses are a mixture of structurally-codependent overlapping individual responses with unknown timing, spectral content, and mixing ratios. As such, it is difficult to determine which part of the signal corresponds to each occupant. We overcome this challenge through a recursive sparse representation approach based on cosine distance that identifies each occupant in a footstep event in the order that their signals are generated, reconstructs their portion of the signal, and removes it from the mixed response. By leveraging sparse representation, our approach can simultaneously identify and separate mixed/overlapping responses, and the use of the cosine distance error function reduces the influence of structural codependency on the multiple walkers' signals. In this way, we isolate and identify each of the multiple occupants' footstep responses. We evaluate our approach by conducting real-world walking experiments with three concurrent walkers and achieve an average F1 score for identifying all persons of 0.89 (1.3x baseline improvement), and with a 10-person "hybrid" dataset (simulated combination of single-walker real-world data), we identify 2, 3, and 4 concurrent walkers with a trace-level accuracy of 100%, 93%, and 73%, respectively, and observe as much as a 2.9x error reduction over a naive baseline approach. 
    more » « less