Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods for promoting student learning, for increasing retention in academic programs, and for improving ability in professional practice is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. In this project we seek to propagate themore »Free, publicly-accessible full text available June 1, 2024
-
Free, publicly-accessible full text available June 1, 2024
-
In this work-in-progress paper, we apply the ecosystems metaphor to develop a model to address the ways a technology-based tool, the Concept Warehouse (Koretsky et al., 2014), propagates in diverse settings and to how students use the tool in their learning. The ecosystem model goes beyond previous research using the Diffusion of Innovations framework (Rogers, 2005). While Diffusion of Innovations has been applied to educational innovations in engineering education (Borrego et al., 2010), physics education (Henderson and Dancy, 2008), and medical education (Rogers, 2002), it does not adequately account for the ways in which instructional and learning practices are socially situated within specific educational ecosystems, nor how those systems influence the ways in which practices are taken up by individuals and groups.
-
In this work-in-progress paper, we apply the ecosystems metaphor to develop a model to address the ways a technology-based tool, the Concept Warehouse (Koretsky et al., 2014), propagates in diverse settings and to how students use the tool in their learning. The ecosystem model goes beyond previous research using the Diffusion of Innovations framework (Rogers, 2005). While Diffusion of Innovations has been applied to educational innovations in engineering education (Borrego et al., 2010), physics education (Henderson and Dancy, 2008), and medical education (Rogers, 2002), it does not adequately account for the ways in which instructional and learning practices are socially situated within specific educational ecosystems, nor how those systems influence the ways in which practices are taken up by individuals and groups.
-
Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist.