skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nordhaus, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2027
  2. We propose that certain white dwarf (WD) planets, such as WD 1856+534 b, may form out of material from a stellar companion that tidally disrupts from common envelope evolution with the WD progenitor star. The disrupted companion shreds into an accretion disc, out of which a gas giant protoplanet forms due to gravitational instability. To explore this scenario, we make use of detailed stellar evolution models consistent with WD 1856+534. The minimum mass companion that produces a gravitationally unstable disc after tidal disruption is ∼ 0.15M⊙ . In this scenario, WD 1856+534 b might have formed at or close to its present separation, in contrast to other proposed scenarios where it would have migrated in from a much larger separation. Planet formation from tidal disruption is a new channel for producing second-generation planets around WDs. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. ABSTRACT The formation pathways for gravitational-wave merger sources are predicted to include common envelope (CE) evolution. Observations of high-mass post-common envelope binaries suggest that energy transfer to the envelope during the CE phase must be highly efficient. In contrast, observations of low-mass post-CE binaries indicate that energy transfer during the CE phase must be highly inefficient. Convection, a process present in low-mass and high-mass stars naturally explains this dichotomy. Using observations of Wolf–Rayet binaries, we study the effects of convection and radiative losses on the predicted final separations of high-mass common envelopes. Despite robust convection in massive stars, the effect is minimal as the orbit decays well before convection can transport the liberated orbital energy to the surface. In low-mass systems, convective transport occurs faster then the orbit decays, allowing the system to radiatively cool, thereby lowering the efficiency. The inclusion of convection reproduces observations of low-mass and high-mass binaries and remains a necessary ingredient for determining outcomes of common envelopes. 
    more » « less
  4. ABSTRACT A significant fraction of isolated white dwarfs host magnetic fields in excess of a MegaGauss. Observations suggest that these fields originate in interacting binary systems where the companion is destroyed thus leaving a singular, highly magnetized white dwarf. In post-main-sequence evolution, radial expansion of the parent star may cause orbiting companions to become engulfed. During the common envelope phase, as the orbital separation rapidly decreases, low-mass companions will tidally disrupt as they approach the giant’s core. We hydrodynamically simulate the tidal disruption of planets and brown dwarfs, and the subsequent accretion disc formation, in the interior of an asymptotic giant branch star. Compared to previous steady-state simulations, the resultant discs form with approximately the same mass fraction as estimated but have not yet reached steady state and are morphologically more extended in height and radius. The long-term evolution of the disc and the magnetic fields generated therein require future study. 
    more » « less