skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nordin, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. With a rapidly rising number of transients detected in astronomy, classification methods based on machine learning are increasingly being employed. Their goals are typically to obtain a definitive classification of transients, and for good performance they usually require the presence of a large set of observations. However, well-designed, targeted models can reach their classification goals with fewer computing resources. Aims. The aim of this study is to assist in the observational astronomy task of deciding whether a newly detected transient warrants follow-up observations. Methods. This paper presents SNGuess, a model designed to find young extragalactic nearby transients with high purity. SNGuess works with a set of features that can be efficiently calculated from astronomical alert data. Some of these features are static and associated with the alert metadata, while others must be calculated from the photometric observations contained in the alert. Most of the features are simple enough to be obtained or to be calculated already at the early stages in the lifetime of a transient after its detection. We calculate these features for a set of labeled public alert data obtained over a time span of 15 months from the Zwicky Transient Facility (ZTF). The core model of SNGuess consists of an ensemble of decision trees, which are trained via gradient boosting. Results. Approximately 88% of the candidates suggested by SNGuess from a set of alerts from ZTF spanning from April 2020 to August 2021 were found to be true relevant supernovae (SNe). For alerts with bright detections, this number ranges between 92% and 98%. Since April 2020, transients identified by SNGuess as potential young SNe in the ZTF alert stream are being published to the Transient Name Server (TNS) under the AMPEL_ZTF_NEW group identifier. SNGuess scores for any transient observed by ZTF can be accessed via a web service https://ampel.zeuthen.desy.de/api/live/docs . The source code of SNGuess is publicly available https://github.com/nmiranda/SNGuess . Conclusions. SNGuess is a lightweight, portable, and easily re-trainable model that can effectively suggest transients for follow-up. These properties make it a useful tool for optimizing follow-up observation strategies and for assisting humans in the process of selecting candidate transients. 
    more » « less
  2. ABSTRACT

    Samples of young Type Ia supernovae have shown ‘early excess’ emission in a few cases. Similar excesses are predicted by some explosion and progenitor scenarios and hence can provide important clues regarding the origin of thermonuclear supernovae. They are, however, only predicted to last up to the first few days following explosion. It is therefore unclear whether such scenarios are intrinsically rare or whether the relatively small sample size simply reflects the difficulty in obtaining sufficiently early detections. To that end, we perform toy simulations covering a range of survey depths and cadences, and investigate the efficiency with which young Type Ia supernovae are recovered. As input for our simulations, we use models that broadly cover the range of predicted luminosities. Based on our simulations, we find that in a typical 3 d cadence survey, only ∼10 per cent of Type Ia supernovae would be detected early enough to rule out the presence of an excess. A 2 d cadence, however, should see this increase to ∼15 per cent. We find comparable results from more detailed simulations of the Zwicky Transient Facility surveys. Using the recovery efficiencies from these detailed simulations, we investigate the number of young Type Ia supernovae expected to be discovered assuming some fraction of the population comes from scenarios producing an excess at early times. Comparing the results of our simulations to observations, we find that the intrinsic fraction of Type Ia supernovae with early flux excesses is $\sim 28^{+13}_{-11}{{\ \rm per\ cent}}$.

     
    more » « less
  3. ABSTRACT

    In the new era of time-domain surveys, Type Ia supernovae are being caught sooner after explosion, which has exposed significant variation in their early light curves. Two driving factors for early-time evolution are the distribution of 56Ni in the ejecta and the presence of flux excesses of various causes. We perform an analysis of the largest young SN Ia sample to date. We compare 115 SN Ia light curves from the Zwicky Transient Facility to the turtls model grid containing light curves of Chandrasekhar mass explosions with a range of 56Ni masses, 56Ni distributions, and explosion energies. We find that the majority of our observed light curves are well reproduced by Chandrasekhar mass explosion models with a preference for highly extended 56Ni distributions. We identify six SNe Ia with an early-time flux excess in our gr-band data (four ‘blue’ and two ‘red’ flux excesses). We find an intrinsic rate of 18 ± 11 per cent of early flux excesses in SNe Ia at z < 0.07, based on three detected flux excesses out of 30 (10 per cent) observed SNe Ia with a simulated efficiency of 57 per cent. This is comparable to rates of flux excesses in the literature but also accounts for detection efficiencies. Two of these events are mostly consistent with circumstellar material interaction, while the other four have longer lifetimes in agreement with companion interaction and 56Ni-clump models. We find a higher frequency of flux excesses in 91T/99aa-like events (44 ± 13 per cent).

     
    more » « less
  4. Abstract We construct a physically parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of Type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed of an autoencoder that is interpreted probabilistically after training using a normalizing flow. We demonstrate that the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the population and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and observation times directly from the data. By introducing a correlation penalty term and multistage training setup alongside our physically parameterized network, we show that intrinsic and extrinsic modes of variability can be separated during training, removing the need for the additional models to perform magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses, including the automatic detection of SN outliers, the generation of samples consistent with the data distribution, and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal number of intrinsic model parameters appears to be three, in line with previous studies, and show that we can standardize our test sample of SNe Ia with an rms of 0.091 ± 0.010 mag, which corresponds to 0.074 ± 0.010 mag if peculiar velocity contributions are removed. Trained models and codes are released at https://github.com/georgestein/suPAErnova. 
    more » « less
  5. Abstract

    We apply the color–magnitude intercept calibration method (CMAGIC) to the Nearby Supernova Factory SNe Ia spectrophotometric data set. The currently existing CMAGIC parameters are the slope and intercept of a straight line fit to the linear region in the color–magnitude diagram, which occurs over a span of approximately 30 days after maximum brightness. We define a new parameter,ωXY, the size of the “bump” feature near maximum brightness for arbitrary filtersXandY. We find a significant correlation between the slope of the linear region,βXY, in the CMAGIC diagram andωXY. These results may be used to our advantage, as they are less affected by extinction than parameters defined as a function of time. Additionally,ωXYis computed independently of templates. We find that current empirical templates are successful at reproducing the features described in this work, particularly SALT3, which correctly exhibits the negative correlation between slope and “bump” size seen in our data. In 1D simulations, we show that the correlation between the size of the “bump” feature andβXYcan be understood as a result of chemical mixing due to large-scale Rayleigh–Taylor instabilities.

     
    more » « less
  6. ABSTRACT

    Type Ia supernovae (SNe Ia) in the nearby Hubble flow are excellent distance indicators in cosmology. The Zwicky Transient Facility (ZTF) has observed a large sample of SNe from an untargeted, rolling survey, reaching 20.8, 20.6, and 20.3 mag in g r, and i band, respectively. With an FoV of 47 deg2, ZTF discovered > 3000 SNe Ia in a little over 2.5 yr. Here, we report on the sample of 761 spectroscopically classified SNe Ia from the first year of operations (DR1). The sample has a median redshift $\bar{z} =$ 0.057, nearly a factor of 2 higher than the current low-z sample. Our sample has a total of 934 spectra, of which 632 were obtained with the robotic SEDm on Palomar P60. We assess the potential for precision cosmology for a total of 305 SNe with redshifts from host galaxy spectra. The sample is already comparable in size to the entire combined literature low-z anchor sample. The median first detection is 13.5 d before maximum light, about 10 d earlier than the median in the literature. Furthermore, six SNe from our sample are at DL < 80 Mpc, for which host galaxy distances can be obtained in the JAMES WEBB SPACE TELESCOPE era, such that we have calibrator and Hubble flow SNe observed with the same instrument. In the entire duration of ZTF-I, we have observed nearly 50 SNe for which we can obtain calibrator distances, key for per cent level distance scale measurements.

     
    more » « less
  7. Abstract

    We calibrate spectrophotometric optical spectra of 32 stars commonly used as standard stars, referenced to 14 stars already on the Hubble Space Telescope–based CALSPEC flux system. Observations of CALSPEC and non-CALSPEC stars were obtained with the SuperNova Integral Field Spectrograph over the wavelength range 3300–9400 Å as calibration for the Nearby Supernova Factory cosmology experiment. In total, this analysis used 4289 standard-star spectra taken on photometric nights. As a modern cosmology analysis, all presubmission methodological decisions were made with the flux scale and external comparison results blinded. The large number of spectra per star allows us to treat the wavelength-by-wavelength calibration for all nights simultaneously with a Bayesian hierarchical model, thereby enabling a consistent treatment of the Type Ia supernova cosmology analysis and the calibration on which it critically relies. We determine the typical per-observation repeatability (median 14 mmag for exposures ≳5 s), the Maunakea atmospheric transmission distribution (median dispersion of 7 mmag with uncertainty 1 mmag), and the scatter internal to our CALSPEC reference stars (median of 8 mmag). We also check our standards against literature filter photometry, finding generally good agreement over the full 12 mag range. Overall, the mean of our system is calibrated to the mean of CALSPEC at the level of ∼3 mmag. With our large number of observations, careful cross-checks, and 14 reference stars, our results are the best calibration yet achieved with an integral-field spectrograph, and among the best calibrated surveys.

     
    more » « less