Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AWP-ODC is a 4th-order finite difference code used by the SCEC community for linear wave propagation, Iwan-type nonlinear dynamic rupture and wave propagation, and Strain Green Tensor simulation. We have ported and verified the CUDA-version of AWP-ODC-SGT, a reciprocal version used in the SCEC CyberShake project, to HIP so that it can also run on AMD GPUs. This code achieved sustained 32.6 Petaflop/s performance and 95.6% parallel efficiency at full scale on Frontier, a Leadership Computing Facility at Oak Ridge National Laboratory. The readiness of this community software on AMD Radeon Instinct GPUs and EPYC CPUs allows SCEC to take advantage of exascale systems to produce more realistic ground motions and accurate seismic hazard products. We have also deployed AWP-ODC to Azure to leverage the array of tools and services that Azure provides for tightly coupled HPC simulation on commercial cloud. We collaborated with Internet 2/Azure Accelerator supporting team, as part of Microsoft Internet2/Azure Accelerator for Research Fall 2022 Program, with Azure credits awarded through Cloudbank, an NSF-funded initiative. We demonstrate the AWP performance with a benchmark of ground motion simulation on various GPU based cloud instances, and a comparison of the cloud solution to on-premises bare-metal systems. AWP-ODC currently achieves excellent speedup and efficiency on CPU and GPU architectures. The Iwan-type dynamic rupture and wave propagation solver faces significant challenges, however, due to the increased computational workload with the number of yield surfaces chosen. Compared to linear solution, the Iwan model adds 10x-30x more computational time plus 5x-13x more memory consumption that require substantial code changes to obtain excellent performance. Supported by NSF’s Characteristic Science Applications (CSA) program for the Leadership-Class Computing Facility (LCCF) at Texas Advanced Computing Center (TACC), we are porting and improving the performance of this nonlinear AWP-ODC software, preparing for the next generation NSF LCCF system called Horizon, to be installed at TACC. During Texascale days on the current TACC’s Frontera, we carried out an Iwan-type nonlinear dynamic rupture and wave propagation simulation of a Mw7.8 scenario earthquake on the southern San Andreas fault. This simulation modeled 83 seconds of rupture with a grid spacing of 25 m to resolve frequencies up to 4 Hz with a minimum shear-wave velocity of 500 m/s.more » « less
-
null (Ed.)Spin liquids are quantum phases of matter with a variety of unusual features arising from their topological character, including “fractionalization”—elementary excitations that behave as fractions of an electron. Although there is not yet universally accepted experimental evidence that establishes that any single material has a spin liquid ground state, in the past few years a number of materials have been shown to exhibit distinctive properties that are expected of a quantum spin liquid. Here, we review theoretical and experimental progress in this area.more » « less
-
null (Ed.)Abstract Amongst the rare-earth perovskite nickelates, LaNiO 3 (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP.more » « less
-
Abstract The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations’ O3 observing run. Here, we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts ≤1 s) we derive 50% (90%) upper limits of 1048(1049) erg for GWs at 300 Hz and 1049(1050) erg at 2 kHz, and constrain the GW-to-radio energy ratio to ≤1014−1016. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs.