skip to main content


Search for: All records

Creators/Authors contains: "Norris, R. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P cav / L cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution Log -  ( α + β z , σ 2 ) and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P cav / L cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts. 
    more » « less
  2. ABSTRACT

    This paper presents the results of 475h of interferometric observations with the Australia Telescope Compact Array towards the Spiderweb protocluster at z=2.16. We search for large, extended molecular gas reservoirs among 46 previously detected CO(1−0) emitters, employing a customised method we developed. Based on the CO emission images and position–velocity diagrams, as well as the ranking of sources using a binary weighting of six different criteria, we have identified 14 robust and 7 tentative candidates that exhibit large extended molecular gas reservoirs. These extended reservoirs are defined as having sizes greater than 40 kpc or supergalactic scale. This result suggests a high frequency of extended gas reservoirs, comprising at least 30 percent of our CO-selected sample. An environmental study of the candidates is carried out based on Nth nearest neighbour and we find that the large molecular gas reservoirs tend to exist in denser regions. The spatial distribution of our candidates is mainly centred on the core region of the Spiderweb protocluster. The performance and adaptability of our method are discussed. We found 13 (potentially) extended gas reservoirs located in eight galaxy (proto)clusters from the literature. We noticed that large extended molecular gas reservoirs surrounding (normal) star-forming galaxies in protoclusters are rare. This may be attributable to the lack of observations low-J CO transitions and the lack of quantitative analyses of molecular gas morphologies. The large gas reservoirs in the Spiderweb protocluster are potential sources of the intracluster medium seen in low redshift Virgo- or Coma-like galaxy clusters.

     
    more » « less
  3. null (Ed.)
    ABSTRACT In this paper, we present the identification of five previously unknown giant radio galaxies (GRGs) using Data Release 1 of the Radio Galaxy Zoo citizen science project and a selection method appropriate to the training and validation of deep learning algorithms for new radio surveys. We associate one of these new GRGs with the brightest cluster galaxy (BCG) in the galaxy cluster GMBCG J251.67741+36.45295 and use literature data to identify a further 13 previously known GRGs as BCG candidates, increasing the number of known BCG GRGs by $\gt 60$ per cent. By examining local galaxy number densities for the number of all known BCG GRGs, we suggest that the existence of this growing number implies that GRGs are able to reside in the centres of rich (∼1014 M⊙) galaxy clusters and challenges the hypothesis that GRGs grow to such sizes only in locally underdense environments. 
    more » « less
  4. Context. The Shapley Supercluster (⟨ z ⟩≈0.048) contains several tens of gravitationally bound clusters and groups, making it an ideal subject for radio studies of cluster mergers. Aims. We used new high sensitivity radio observations to investigate the less energetic events of mass assembly in the Shapley Supercluster from supercluster down to galactic scales. Methods. We created total intensity images of the full region between A3558 and A3562, from ∼230 to ∼1650 MHz, using ASKAP, MeerKAT and the GMRT, with sensitivities ranging from ∼6 to ∼100 μJy beam −1 . We performed a detailed morphological and spectral study of the extended emission features, complemented with ESO-VST optical imaging and X-ray data from XMM-Newton . Results. We report the first GHz frequency detection of extremely low brightness intercluster diffuse emission on a ∼1 Mpc scale connecting a cluster and a group, namely: A3562 and the group SC 1329–313. It is morphologically similar to the X-ray emission in the region. We also found (1) a radio tail generated by ram pressure stripping in the galaxy SOS 61086 in SC 1329–313; (2) a head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar; (3) ultrasteep diffuse emission at the centre of A3558. Finally (4), we confirm the ultra-steep spectrum nature of the radio halo in A3562. Conclusions. Our study strongly supports the scenario of a flyby of SC 1329–313 north of A3562 into the supercluster core. This event perturbed the centre of A3562, leaving traces of this interaction in the form of turbulence between A3562 and SC 1329–313, at the origin of the radio bridge and eventually affecting the evolution of individual supercluster galaxies by triggering ram pressure stripping. Our work shows that minor mergers can be spectacular and have the potential to generate diffuse radio emission that carries important information on the formation of large-scale structures in the Universe. 
    more » « less
  5. ABSTRACT

    We present the discovery of highly collimated radio jets spanning a total of 355 kpc around the nearby elliptical galaxy NGC 2663, and the possible first detection of recollimation on kiloparsec scales. The small distance to the galaxy (∼28.5 Mpc) allows us to resolve portions of the jets to examine their structure. We combine multiwavelength data: radio observations by the Murchison Widefield Array (MWA), the Australian Square Kilometre Array Pathfinder (ASKAP) and the Australia Telescope Compact Array (ATCA), and X-ray data from Chandra, Swift, and SRG/eROSITA. We present intensity, rotation measure, polarization, spectral index, and X-ray environment maps. Regions of the southern jet show simultaneous narrowing and brightening, which can be interpreted as a signature of the recollimation of the jet by external, environmental pressure, though it is also consistent with intermittent active galactic nuclei or complex internal jet structure. X-ray data suggest that the environment is extremely poor; if the jet is indeed recollimating, the large recollimation scale (40 kpc) is consistent with a slow jet in a low-density environment.

     
    more » « less
  6. null (Ed.)
    The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of the two clusters is ~50′ or ~3.1 Mpc. Here we present an inventory of interesting radio sources in this field around this cluster merger. While the eROSITA observations provide clear indications of a bridge of thermal gas between the clusters, neither ASKAP nor MWA observations show any diffuse radio emission coinciding with the X-ray bridge. We derive an upper limit on the radio emissivity in the bridge region of 〈 J 〉 1 GHz < 1.2 × 10 −44 W Hz −1 m −3 . A non-detection of diffuse radio emission in the X-ray bridge between these two clusters has implications for particle-acceleration mechanisms in cosmological large-scale structure. We also report extended or otherwise noteworthy radio sources in the 30 deg 2 field around Abell 3391-Abell 3395. We identified 20 Giant Radio Galaxies, plus 7 candidates, with linear projected sizes greater than 1 Mpc. The sky density of field radio galaxies with largest linear sizes of >0.7 Mpc is ≈1.7 deg −2 , three times higher than previously reported. We find no evidence for a cosmological evolution of the population of Giant Radio Galaxies. Moreover, we find seven candidates for cluster radio relics and radio halos. 
    more » « less
  7. ABSTRACT We report the discovery of J0624–6948, a low-surface brightness radio ring, lying between the Galactic Plane and the large magellanic cloud (LMC). It was first detected at 888 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP), and with a diameter of ∼196 arcsec. This source has phenomenological similarities to odd radio circles (ORCs). Significant differences to the known ORCs – a flatter radio spectral index, the lack of a prominent central galaxy as a possible host, and larger apparent size – suggest that J0624–6948 may be a different type of object. We argue that the most plausible explanation for J0624–6948 is an intergalactic supernova remnant due to a star that resided in the LMC outskirts that had undergone a single-degenerate type Ia supernova, and we are seeing its remnant expand into a rarefied, intergalactic environment. We also examine if a massive star or a white dwarf binary ejected from either galaxy could be the supernova progenitor. Finally, we consider several other hypotheses for the nature of the object, including the jets of an active galactic nucleus (30Dor) or the remnant of a nearby stellar super-flare. 
    more » « less
  8. null (Ed.)
    Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based on the HI4PI and IRAS surveys. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. Results. We trace the irregular morphology of warm and hot gas of the main clusters from their centers out to well beyond their characteristic radii, r 200 . Between the two main cluster systems, we observe an emission bridge on large scale and with good spatial resolution. This bridge includes a known galaxy group but this can only partially explain the emission. Most gas in the bridge appears hot, but thanks to eROSITA’s unique soft response and large field of view, we discover some tantalizing hints for warm, truly primordial filamentary gas connecting the clusters. Several matter clumps physically surrounding the system are detected. For the “Northern Clump,” we provide evidence that it is falling towards A3391 from the X-ray hot gas morphology and radio lobe structure of its central AGN. Moreover, the shapes of these X-ray and radio structures appear to be formed by gas well beyond the virial radius, r 100 , of A3391, thereby providing an indirect way of probing the gas in this elusive environment. Many of the extended sources in the field detected by eROSITA are also known clusters or new clusters in the background, including a known SZ cluster at redshift z = 1. We find roughly an order of magnitude more cluster candidates than the SPT and ACT surveys together in the same area. We discover an emission filament north of the virial radius of A3391 connecting to the Northern Clump. Furthermore, the absorption-corrected eROSITA surface brightness map shows that this emission filament extends south of A3395 and beyond an extended X-ray-emitting object (the “Little Southern Clump”) towards another galaxy cluster, all at the same redshift. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA PV observation field. The Northern and Southern Filament are each detected at >4 σ . The Planck SZ map additionally appears to support the presence of both new filaments. Furthermore, the DECam galaxy density map shows galaxy overdensities in the same regions. Overall, the new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution; the similarities of features found in a similar system in the Magneticum simulation are striking. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure. 
    more » « less
  9. Abstract We present a detailed analysis of the radio galaxy PKS $2250{-}351$ , a giant of 1.2 Mpc projected size, its host galaxy, and its environment. We use radio data from the Murchison Widefield Array, the upgraded Giant Metre-wavelength Radio Telescope, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to model the jet power and age. Optical and IR data come from the Galaxy And Mass Assembly (GAMA) survey and provide information on the host galaxy and environment. GAMA spectroscopy confirms that PKS $2250{-}351$ lies at $z=0.2115$ in the irregular, and likely unrelaxed, cluster Abell 3936. We find its host is a massive, ‘red and dead’ elliptical galaxy with negligible star formation but with a highly obscured active galactic nucleus dominating the mid-IR emission. Assuming it lies on the local M – $\sigma$ relation, it has an Eddington accretion rate of $\lambda_{\rm EDD}\sim 0.014$ . We find that the lobe-derived jet power (a time-averaged measure) is an order of magnitude greater than the hotspot-derived jet power (an instantaneous measure). We propose that over the lifetime of the observed radio emission ( ${\sim} 300\,$ Myr), the accretion has switched from an inefficient advection-dominated mode to a thin disc efficient mode, consistent with the decrease in jet power. We also suggest that the asymmetric radio morphology is due to its environment, with the host of PKS $2250{-}351$ lying to the west of the densest concentration of galaxies in Abell 3936. 
    more » « less