Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sleep is an evolutionarily ancient behavior, yet multiple cave-dwelling populations of the Mexican tetra, Astyanax mexicanus, have converged on sleep loss compared to surface fish. However, most of the 34 cave populations remain unstudied, and sleep in natural habitats is largely unknown. To address this, we measured sleep and activity in 15 representative populations of surface, cave, and hybrid populations. All cavefish and hybrid populations tested exhibited drastically reduced sleep, including hybrid populations with diverse eye and pigmentation phenotypes. Mapping behavior onto the A. mexicanus phylogeny revealed that reduced sleep and elevated locomotor activity evolved independently multiple times. Field experiments confirmed that wild fish also exhibit sleep loss, paralleling laboratory findings. These results demonstrate deep evolutionary convergence on sleep loss across cavefish lineages and suggest that sleep reduction is a primary trait contributing to adaptation in subterranean environments.more » « lessFree, publicly-accessible full text available December 1, 2026
-
ABSTRACT Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish,Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface‐dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations ofA. mexicanus. Larval surface and cave populations ofA. mexicanusincrease sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short‐sleeping populations of cavefish, suggesting sleep‐feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.more » « less
-
Abstract Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish,Astyanax mexicanus,have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations ofA. mexicanus.Larval surface and cave populations ofA. mexicanusincrease sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.more » « less
An official website of the United States government
