skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nossal, Susan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given the existential threat of climate change, we urge the heliophysics scientific community to consider ways in which we might further contribute to global efforts to address climate change. Whole atmosphere studies reveal that climate change processes impact even the uppermost regions of the atmosphere. The heliophysics research community now has models spanning the surface through the upper thermosphere and a diversity of observational datasets of the middle and upper atmosphere that span multiple decades. These studies indicate that the middle and upper atmosphere provide multiple vertical footprints for climate change and thus can contribute to an understanding of whole atmosphere climate change processes in the complex atmosphereland- ocean system. This white paper outlines recommendations for expansion of long-term data sets; simulations of climate with whole atmosphere models; engagement in collaborations with the tropospheric research community; and exploration of the possibility of heliophysics contributions to climate assessment efforts. Additionally, we recommend education and outreach efforts to help members of the wider community become more knowledgeable about climate change; support for efforts to increase the diversity of the heliophysics science community; support for international collaborations, and climate mitigation measures that our science community can implement to reduce greenhouse gas emissions from our research, education, and outreach activities. 
    more » « less
  2. Abstract Motivated by numerous lower atmosphere climate model hindcast simulations, we performed simulations of the Earth's atmosphere from the surface up through the thermosphere‐ionosphere to reveal for the first time the century scale changes in the upper atmosphere from the 1920s through the 2010s using the Whole Atmosphere Community Climate Model—eXtended (WACCM‐X v. 2.1). We impose solar minimum conditions to get a clear indication of the effects of the long‐term forcing from greenhouse gas increases and changes of the Earth's magnetic field and to avoid the requirement for careful removal of the 11‐year solar cycle as in some previous studies using observations and models. These previous studies have shown greenhouse gas effects in the upper atmosphere but what has been missing is the time evolution with actual greenhouse gas increases throughout the last century, including the period of less than 5% increase prior to the space age and the transition to the over 25% increase in the latter half of the 20th century. Neutral temperature, density, and ionosphere changes are close to those reported in previous studies. Also, we find high correlation between the continuous carbon dioxide rate of change over this past century and that of temperature in the thermosphere and the ionosphere, attributed to the shorter adjustment time of the upper atmosphere to greenhouse gas changes relative to the longer time in the lower atmosphere. Consequently, WACCM‐X future scenario projections can provide valuable insight in the entire atmosphere of future greenhouse gas effects and mitigation efforts. 
    more » « less