skip to main content


Search for: All records

Creators/Authors contains: "Noyan, Mehmet A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a novel technique for generating beams of light carrying orbital angular momentum (OAM) that increases mode purity and decreases singularity splitting by orders of magnitude. This technique also works to control and mitigate beam divergence within propagation distances less than the Rayleigh length. Additionally, we analyze a tunable parameter of this technique that can change the ratio of beam purity to power to fit desired specifications. Beam generation via this technique is achievable using only phase-modulating optical elements, which reduces experimental complexity and beam energy loss.

     
    more » « less
  2. Abstract

    Two‐dimensional (2D) hexagonal boron nitride (hBN) is one of the most promising candidates to host solid‐state single photon emitters (SPEs) for various quantum technologies. However, the 2D nature with an atomic‐scale thickness leads to inevitable challenges in spectral variability caused by substrate disturbance, lattice strain heterogeneity, and defect variation. Here, three‐dimensional (3D) nanoarchitectured hBN is reported with integrated SPEs from native defects generated during high‐temperature chemical vapor deposition (CVD). The 3D hBN has a quasi‐periodic gyroid minimal surface structure and is composed of a continuous 2D hBN sheet with built‐in convex and concave curvatures that promote the formation of optically active and thermally robust native defects. The free‐standing feature of the gyroid hBN with a nearly zero mean curvature can effectively eliminate the substrate disturbance and minimize lattice strain heterogeneity. As a result, naturally occurring defects with a narrow SPE spectral distribution can be created and activated as color centers in the 3D hBN, and the density of the SPEs can be tailored by CVD temperature.

     
    more » « less