skip to main content

Search for: All records

Creators/Authors contains: "Nugent, Peter E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023

    Supernova (SN) siblings – two or more SNe in the same parent galaxy – are useful tools for exploring progenitor stellar populations as well as properties of the host galaxies such as distance, star-formation rate, dust extinction, and metallicity. Since the average SN rate for a Milky Way-type galaxy is just one per century, a large imaging survey is required to discover an appreciable sample of SN siblings. From the wide-field Zwicky Transient Facility (ZTF) Bright Transient Survey (which aims for spectroscopic completeness for all transients which peak brighter than r < 18.5 mag) we present 10 SN siblings in five parent galaxies. For each of these families, we analyse the SN’s location within the host and its underlying stellar population, finding agreement with expectations that SNe from more massive progenitors are found nearer to their host core and in regions of more active star formation. We also present an analysis of the relative rates of core collapse and thermonuclear SN siblings, finding a significantly lower ratio than past SN sibling samples due to the unbiased nature of the ZTF.

  3. The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a “Cosmology” sample of ˜100 Type Ia supernovae located in the smooth Hubble flow (0.03 ≲ z ≲ 0.10). Light curves were also obtained of a “Physics” sample composed of 90 nearby Type Ia supernovae at z ≤ 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.