skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nur, Nayma Binte"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To understand surface biogeophysical processes, accurately evaluating the geographical and temporal fluctuations of soil moisture is crucial. It is well known that the surface soil moisture content (SMC) affects soil reflectance at all solar spectrum wavelengths. Therefore, future satellite missions, such as the NASA Surface Biology and Geology mission, will be essential for mapping and monitoring global soil moisture changes. Our study compares two widely used moisture retrieval models: the multilayer radiative transfer model of soil reflectance (MARMIT) and the soil water parametric (SWAP)‐Hapke model. We evaluated the SMC retrieval accuracy of these models using unmanned aerial systems (UAS) hyperspectral imagery and goniometer hyperspectral data. Laboratory analysis employed hyperspectral goniometer data of sediment samples from four locations reflecting diverse environments, while field validation used hyperspectral UAS imaging and coordinated ground truth collected in 2018 and 2019 from a barrier island beach at the Virginia Coast Reserve Long‐Term Ecological Research site. The (SWAP)‐Hapke model achieves comparable accuracy to MARMIT using laboratory hyperspectral data but is less accurate when applied to UAS hyperspectral imagery than the MARMIT model. We proposed a modified version of the (SWAP)‐Hapke model, which achieves better results than MARMIT when applied to laboratory spectral measurements; however, MARMIT's performance is still more accurate when applied to UAS imagery. These results are likely due to differences in the models' descriptions of multiply‐scattered light and MARMIT's more detailed description of air‐water interactions. 
    more » « less