skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Nuruzzaman, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries Bn on 12C and 27Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additional kinematic point to a series of previous measurements of Bn on 12C and provide a first measurement on 27Al. The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energy of 1.158 GeV. The average laboratory scattering angle for both targets was 7.7∘, and the average Q2 for both targets was 0.024 37 GeV2 (Q=0.1561 GeV). The asymmetries are Bn=−10.68±0.90(stat)±0.57(syst) ppm for 12C and Bn=−12.16±0.58(stat)±0.62(syst) ppm for 27Al. The results are consistent with theoretical predictions, and are compared to existing data. When scaled by Z/A, the Q dependence of all the far-forward angle (θ<10∘) data from 1H to 27Al can be described by the same slope out to Q≈0.35 GeV. Larger-angle data from other experiments in the same Q range are consistent with a slope about twice as steep. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of θlab=7.9° and a mean energy of 1.149 GeV. The asymmetry result is Bn=−5.194±0.067(stat)±0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (θlab→0) where they should be most reliable. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. The ratio of the electric to magnetic form factors of the proton, μpGEp/GMp, has been measured for elastic electron-proton scattering with polarized beam and target up to four-momentum transfer squared Q2=5.66(GeV/c)2 using double spin asymmetry for target spin orientation aligned nearly perpendicular to the beam momentum direction. This measurement of μpGEp/GMp agrees with the Q2 dependence of previous recoil polarization data and reconfirms the discrepancy at high Q2 between the Rosenbluth and the polarization-transfer method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The form factor ratio at Q2=2.06(GeV/c)2 has been measured as μpGEp/GMp=0.720±0.176stat±0.039sys, which is in agreement with an earlier measurement using the polarized target technique at similar kinematics. The form factor ratio at Q2=5.66(GeV/c)2 has been determined as μpGEp/GMp=0.244±0.353stat±0.013sys, which represents the highest Q2 measurement reached using double spin asymmetries with polarized target to date. 
    more » « less