Seismic anisotropy provides essential information for characterizing the orientation of deformation and flow in the crust and mantle. The isotropic structure of the Antarctic crust and upper mantle has been determined by previous studies, but the azimuthal anisotropy structure has only been constrained by mantle core phase (SKS) splitting observations. This study determines the azimuthal anisotropic structure of the crust and mantle beneath the central and West Antarctica based on 8—55 s Rayleigh wave phase velocities from ambient noise cross‐correlation. An anisotropic Rayleigh wave phase velocity map was created using a ray—based tomography method. These data are inverted using a Bayesian Monte Carlo method to obtain an azimuthal anisotropy model with uncertainties. The azimuthal anisotropy structure in most of the study region can be fit by a two‐layer structure, with one layer at depths of 0–15 km in the shallow crust and the other layer in the uppermost mantle. The azimuthal anisotropic layer in the shallow crust of West Antarctica, where it coincides with strong positive radial anisotropy quantified by the previous study, shows a fast direction that is subparallel to the inferred extension direction of the West Antarctic Rift System. Fast directions of upper mantle azimuthal anisotropy generally align with teleseismic shear wave splitting fast directions, suggesting a thin lithosphere or similar lithosphere‐asthenosphere deformation. However, inconsistencies in this exist in Marie Byrd Land, indicating differing ancient deformation patterns in the shallow mantle lithosphere sampled by the surface waves and deformation in the deeper mantle and asthenosphere sampled more strongly by splitting measurements.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The origin of the Cameroon Volcanic Line (CVL), which is difficult to explain with traditional plate tectonics and mantle convection models because the volcanism does not display clear age progression, remains widely debated. Existing seismic tomography models show anomalously slow structure beneath the CVL, which some have interpreted to reflect upper mantle convective processes, possibly associated with edge‐driven flow related to the neighboring Congo Craton. However, mid‐ and lower mantle depths are generally not well resolved in these models, making it difficult to determine the extent of the anomalous CVL structure. Here, we present a new P‐wave velocity model for the African mantle, developed with the largest collection of travel‐time residuals recorded across the continent to date and an adaptive model parameterization. Our extensive data set and inversion method yield high resolution images of the mantle structure beneath western Africa, particularly at the critical mid‐ and lower mantle depths needed to further evaluate processes associated with the formation of the CVL. Our new model provides strong evidence for a connection between the African Large Low Velocity Province, centered in the lower mantle beneath southern Africa, and the continental portion of the CVL. We suggest that seismically slow material generated near the core‐mantle boundary beneath southern Africa moves northwestward under the Congo Craton. At the northern edge of the craton, the hot, buoyant material rises through the upper mantle, causing the CVL volcanism. Consequently, CVL magmatism can be linked to large‐scale mantle processes rooted in the deep mantle.
-
In weathered bedrock aquifers, groundwater is stored in pores and fractures that open as rocks are exhumed and minerals interact with meteoric fluids. Little is known about this storage because geochemical and geophysical observations are limited to pits, boreholes, or outcrops or to inferences based on indirect measurements between these sites. We trained a rock physics model to borehole observations in a well-constrained ridge and valley landscape and then interpreted spatial variations in seismic refraction velocities. We discovered that P-wave velocities track where a porosity-generating reaction initiates in shale in three boreholes across the landscape. Specifically, velocities of 2.7 ± 0.2 km/s correspond with growth of porosity from dissolution of chlorite, the most reactive of the abundant minerals in the shale. In addition, sonic velocities are consistent with the presence of gas bubbles beneath the water table under valley and ridge. We attribute this gas largely to CO2produced by 1) microbial respiration in soils as meteoric waters recharge into the subsurface and 2) the coupled carbonate dissolution and pyrite oxidation at depth in the rock. Bubbles may nucleate below the water table because waters depressurize as they flow from ridge to valley and because pores have dilated as the deep rock has been exhumed by erosion. Many of these observations are likely to also describe the weathering and flow path patterns in other headwater landscapes. Such combined geophysical and geochemical observations will help constrain models predicting flow, storage, and reaction of groundwater in bedrock systems.
-
Abstract The Transantarctic Mountains (TAMs), Antarctica, exhibit anomalous uplift and volcanism and have been associated with regions of thermally perturbed upper mantle that may or may not be connected to lower mantle processes. To determine if the anomalous upper mantle beneath the TAMs connects to the lower mantle, we interrogate the mantle transition zone (MTZ) structure under the TAMs and adjacent parts of East Antarctica using 12,500+ detections of P-to-S conversions from the 410 and 660 km discontinuities. Our results show distinct zones of thinner-than-global-average MTZ (∼205–225 km, ∼10%–18% thinner) beneath the central TAMs and southern Victoria Land, revealing throughgoing convective thermal anomalies (i.e., mantle plumes) that connect prominent upper and lower mantle low-velocity regions. This suggests that the thermally perturbed upper mantle beneath the TAMs and Ross Island may have a lower mantle origin, which could influence patterns of volcanism and TAMs uplift.more » « less
-
null (Ed.)Abstract Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s −1 ). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s −1 . Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation.more » « less
-
Abstract The geothermal heat flux (GHF) is an important boundary condition for modeling the movement of the Antarctic ice sheet but is difficult to measure systematically at a continental scale. Earlier GHF maps suffer from low resolution and possibly biased assumptions in tectonism and crustal heat generation, resulting in significant uncertainty. We present a new GHF map for Antarctica constructed by empirically relating the upper mantle structure to known GHF in the continental United States. The new map, compared with previously seismologically determined one, has improved resolution and lower uncertainties. New features in this map include high GHF in the southern Transantarctic Mountains where warmer uppermost mantle is introduced by lithospheric removal and in the Thwaites Glacier region. Additionally, a modest GHF in the central West Antarctic Rift system near the Siple Coast and an absence of large‐scale regions with GHF greater than 90 mW/m2are found.
-
Abstract We examine upper mantle anisotropy across the Antarctic continent using 102 new shear wave splitting measurements obtained from teleseismic SKS, SKKS, and PKS phases combined with 107 previously published results. For the new measurements, an eigenvalue technique is used to estimate the fast polarization direction and delay time for each phase arrival, and high‐quality measurements are stacked to determine the best‐fit splitting parameters at each seismic station. The ensemble of splitting measurements shows largely NE‐SW‐oriented fast polarization directions across Antarctica, with a broadly clockwise rotation in polarization directions evident moving from west to east across the continent. Although the first‐order pattern of NE‐SW‐oriented polarization directions is suggestive of a single plate‐wide source of anisotropy, we argue the observed pattern of anisotropy more likely arises from regionally variable contributions of both lithospheric and sub‐lithospheric mantle sources. Anisotropy observed in the interior of East Antarctica, a region underlain by thick lithosphere, can be attributed to relict fabrics associated with Precambrian tectonism. In contrast, anisotropy observed in coastal East Antarctica, the Transantarctic Mountains (TAM), and across much of West Antarctica likely reflects both lithospheric and sub‐lithospheric mantle fabrics. While sub‐lithospheric mantle fabrics are best associated with either plate motion‐induced asthenospheric flow or small‐scale convection, lithospheric mantle fabrics in coastal East Antarctica, the TAM, and West Antarctica generally reflect Jurassic—Cenozoic tectonic activity.