skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Harra, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2025
  2. Nitrogen and oxygen-donor ligands comprised of alkylimidazoles, tertiary amides, and diglycolamides were employed to form transition metal chelates in the preparation of twelve magnetic ionic liquids. Viscosities as low as 198 cP were achieved. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    For many years, experimental and theoretical studies have investigated the solubility of CO 2 in a variety of ionic liquids (ILs), but the overarching absorption mechanism is still unclear. Currently, two different factors are believed to dominate the absorption performance: (a) the fractional free volume (FFV) accessible for absorption; and (b) the nature of the CO 2 interactions with the anion species. The FFV is often more influential than the specific choice of the anion, but neither mechanism provides a complete picture. Herein, we have attempted to decouple these mechanisms in order to provide a more definitive molecular-level perspective of CO 2 absorption in IL solvents. We simulate a series of nine different multivalent ILs comprised of imidazolium cations and sulfonate/sulfonimide anions tethered to benzene rings, along with a comprehensive analysis of the CO 2 absorption and underlying molecular-level features. We find that the CO 2 solubility has a very strong, linear correlation with respect to FFV, but only when comparisons are constrained to a common anion species. The choice of anion results in a fundamental remapping of the correlation between CO 2 solubility and FFV. Overall, the free volume effect dominates in the ILs with smaller FFV values, while the choice of anion becomes more important in the systems with larger FFVs. Our proposed mechanistic map is intended to provide a more consistent framework for guiding further IL design for gas absorption applications. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Here we introduce the synthesis and thermal properties of a series of sophisticated imidazolium ionenes with alternating amide-amide or amide-imide backbone functionality, and investigate the structural effects of mono(imidazolium) and unprecedented tris(imidazolium) ionic liquids (ILs) in these ionenes. The new set of poly(amide-amide) (PAA) and poly(amide-imide) (PAI) ionenes represent the intersection of conventional high-performance polymers with the ionene archetype–presenting polymers with alternating functional and ionic elements precisely sequenced along the backbone. The effects of polymer composition on the thermal properties and morphology were analyzed. Five distinct polymer backbones were synthesized and combined with a stoichiometric equivalent of the IL 1-benzyl-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), which were studied to probe the self-assembly, structuring, and contributions of intermolecular forces when IL is added. Furthermore, three polyamide (PA) or polyimide (PI) ionenes with simpler xylyl linkages were interfaced with [Bnmim][Tf2N] as well as a novel amide-linked tris(imidazolium) IL, to demonstrate the structural changes imparted by the inclusion of functional, ionic additives dispersed within the ionene matrix. This work highlights the possibilities for utilizing concepts from small molecules which exhibit supramolecular self-assembly to guide creative design and manipulate the structuring of ionenes. 
    more » « less
  7. null (Ed.)
    Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs. 
    more » « less
  8. null (Ed.)
    Here, we report the synthesis and thermophysical properties of seven primarily aromatic, imidazolium-based polyamide ionenes. The effects of varied para-, meta-, and ortho-connectivity, and spacing of ionic and amide functional groups, on structural and thermophysical properties were analyzed. Suitable, robust derivatives were cast into thin films, neat, or with stoichiometric equivalents of the ionic liquid (IL) 1-benzy-3-methylimidazolium bistriflimide ([Bnmim][Tf2N]), and the gas transport properties of these membranes were measured. Pure gas permeabilities and permselectivities for N2, CH4, and CO2 are reported. Consistent para-connectivity in the backbone was shown to yield the highest CO2 permeability and suitability for casting as a very thin, flexible film. Derivatives containing terephthalamide segments exhibited the highest CO2/CH4 and CO2/N2 selectivities, yet CO2 permeability decreased with further deviation from consistent para-linkages. 
    more » « less