skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O'Neill, Sloane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to the central role played by carbohydrates in a multitude of biological processes, there has been a sustained interest in developing effective glycosylation methods to enable more thorough investigation of their essential functions. Among the myriad technologies available for stereoselective glycoside bond formation, dehydrative glycosylation possesses a distinct advantage given the unique properties of C1‐alcohols such as straightforward preparation, stability, and a general reactivity compatible with a diverse set of reaction conditions. In this Focus Review, a survey of direct dehydrative glycosylations of C1‐alcohols is provided with an emphasis on recent achievements, pervading limitations, mechanistic insights, and applications in total synthesis. 
    more » « less