skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oakes, Conrad G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Concentrations of RNAs and proteins provide important determinants of cell fate. Robust gene circuit design requires an understanding of how the combined actions of individual genetic components influence both messenger RNA (mRNA) and protein levels. Here, we simultaneously measure mRNA and protein levels in single cells using hybridization chain reaction Flow-FISH (HCR Flow-FISH) for a set of commonly used synthetic promoters. We find that promoters generate differences in both the mRNA abundance and the effective translation rate of these transcripts. Stronger promoters not only transcribe more RNA but also show higher effective translation rates. While the strength of the promoter is largely preserved upon genome integration with identical elements, the choice of polyadenylation signal and coding sequence can generate large differences in the profiles of the mRNAs and proteins. We used long-read direct RNA sequencing to define the transcription start and splice sites of common synthetic promoters and independently vary the defined promoter and 5′ UTR sequences in HCR Flow-FISH. Together, our high-resolution profiling of transgenic mRNAs and proteins offers insight into the impact of common synthetic genetic components on transcriptional and translational mechanisms. By developing a novel framework for quantifying expression profiles of transgenes, we have established a system for building more robust transgenic systems. 
    more » « less
  2. Abstract Gene syntax—the order and arrangement of genes and their regulatory elements—shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that the reciprocal effects of transcription and DNA supercoiling, which we term supercoiling-mediated feedback, regulates expression of adjacent genes in a syntax-specific manner. Using a suite of chromatin state assays, we measure syntax-and induction-dependent formation of chromatin structures in human induced pluripotent stem cells. Applying syntax as a design parameter and without altering sequence or copy number, we built compact gene circuits, tuning the expression mean, noise, and stoichiometry across diverse delivery methods and cell types. Integrating supercoiling-mediated feedback into models of gene regulation will expand our understanding of native systems and enhance the design of synthetic gene circuits. 
    more » « less
    Free, publicly-accessible full text available January 19, 2026