Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracodVargula tsujii, transfer sulfatein vitroto the luciferin substrate, vargulin. We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous to known LSTs of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Reuse of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.more » « less
-
Abstract BackgroundPredicting phenotypes from genetic variation is foundational for fields as diverse as bioengineering and global change biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has been a goal of decades of experimental work, especially for some model gene families including light-sensitive opsin proteins. Opsins can be expressed in vitro to measure light absorption parameters, including λmax - the wavelength of maximum absorbance - which strongly affects organismal phenotypes like color vision. Despite extensive research on opsins, the data remain dispersed, uncompiled, and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between genotype and phenotype. ResultsHere, we report a newly compiled database of all heterologously expressed opsin genes with λmaxphenotypes called the Visual Physiology Opsin Database (VPOD).VPOD_1.0contains 864 unique opsin genotypes and corresponding λmaxphenotypes collected across all animals from 73 separate publications. We useVPODdata anddeepBreaksto show regression-based machine learning (ML) models often reliably predict λmax, account for non-additive effects of mutations on function, and identify functionally critical amino acid sites. ConclusionThe ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular-evolutionary patterns governing phenotype, will inform functional and evolutionary connections to an organism’s ecological niche, and may be used more broadly forde-novoprotein design. Together, our database, phenotype predictions, and model comparisons lay the groundwork for future research applicable to families of genes with quantifiable and comparable phenotypes. Key PointsWe introduce the Visual Physiology Opsin Database (VPOD_1.0), which includes 864 unique animal opsin genotypes and corresponding λmaxphenotypes from 73 separate publications.We demonstrate that regression-based ML models can reliably predict λmax from gene sequence alone, predict non-additive effects of mutations on function, and identify functionally critical amino acid sites.We provide an approach that lays the groundwork for future robust exploration of molecular-evolutionary patterns governing phenotype, with potential broader applications to any family of genes with quantifiable and comparable phenotypes.more » « less
-
Path dependence influences macroevolutionary predictability by constraining potential outcomes after critical evolutionary junctions. Although it has been demonstrated in laboratory experiments, path dependence is difficult to demonstrate in natural systems because of a lack of independent replicates. Here, we show that two types of distributed visual systems recently evolved twice within chitons, demonstrating rapid and path-dependent evolution of a complex trait. The type of visual system that a chiton lineage can evolve is constrained by the number of openings for sensory nerves in its shell plates. Lineages with more openings evolve visual systems with thousands of eyespots, whereas those with fewer openings evolve visual systems with hundreds of shell eyes. These macroevolutionary outcomes shaped by path dependence are both deterministic and stochastic because possibilities are restricted yet not entirely predictable.more » « less
-
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a “deep diversity” of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.more » « less
-
Cubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types—the image-forming upper and lower lens eyes—express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin ( Tc LEO ), which belongs to the cnidarian-specific clade cnidops. Interestingly, molecular work has found a high number of opsin genes in box jellyfish, especially in the Caribbean species Tripedalia cystophora , most of which are of unknown function. In the current study, we raised antibodies against three out of five opsins identified from transcriptomic data from T. cystophora and used them to map the expression patterns. These expression patterns suggest one opsin as the photopigment in the slit eyes and another as a putative photoisomerase found in photoreceptors of all four eyes types. The last antibody stained nerve-like cells in the tentacles, in connection with nematocytes, and the radial nerve, in connection with the gonads. This is the first time photopigment expression has been localized to the outer segments of the photoreceptors in a cnidarian ocellus (simple eye). The potential presence of a photoisomerase could be another interesting convergence between box jellyfish and vertebrate photoreceptors, but it awaits final experimental proof.more » « less
-
Dicyemids and orthonectids were traditionally classified in a group called Mesozoa, but their placement in a single clade has been contested and their position(s) within Metazoa is uncertain. Here, we assembled a comprehensive matrix of Lophotrochozoa (Metazoa) and investigated the position of Dicyemida (= Rhombozoa) and Orthonectida, employing multiple phylogenomic approaches. We sequenced seven new transcriptomes and one draft genome from dicyemids ( Dicyema , Dicyemennea ) and two transcriptomes from orthonectids ( Rhopalura ). Using these and published data, we assembled and analysed contamination-filtered datasets with up to 987 genes. Our results recover Mesozoa monophyletic and as a close relative of Platyhelminthes or Gnathifera. Because of the tendency of the long-branch mesozoans to group with other long-branch taxa in our analyses, we explored the impact of approaches purported to help alleviate long-branch attraction (e.g. taxon removal, coalescent inference, gene targeting). None of these were able to break the association of Orthonectida with Dicyemida in the maximum-likelihood trees. Contrastingly, the Bayesian analysis and site-specific frequency model in maximum-likelihood did not recover a monophyletic Mesozoa (but only when using a specific 50 gene matrix). The classic hypothesis on monophyletic Mesozoa is possibly reborn and should be further tested.more » « less
-
Abstract Eyes are quintessential complex traits and our understanding of their evolution guides models of trait evolution in general. A long-standing account of eye evolution argues natural selection favors morphological variations that allow increased functionality for sensing light. While certainly true in part, this focus on visual performance does not entirely explain why diffuse photosensitivity persists even after eyes evolve, or why eyes evolved many times, each time using similar building blocks. Here, we briefly review a vast literature indicating most genetic components of eyes historically responded to stress caused directly by light, including ultraviolet damage of DNA, oxidative stress, and production of aldehydes. We propose light-induced stress had a direct and prominent role in the evolution of eyes by bringing together genes to repair and prevent damage from light-stress, both before and during the evolution of eyes themselves. Stress-repair and stress-prevention genes were perhaps originally deployed as plastic responses to light and/or as beneficial mutations genetically driving expression where light was prominent. These stress-response genes sense, shield, and refract light but only as reactions to ongoing light stress. Once under regulatory-genetic control, they could be expressed before light stress appeared, evolve as a module, and be influenced by natural selection to increase functionality for sensing light, ultimately leading to complex eyes and behaviors. Recognizing the potentially prominent role of stress in eye evolution invites discussions of plasticity and assimilation and provides a hypothesis for why similar genes are repeatedly used in convergent eyes. Broadening the drivers of eye evolution encourages consideration of multi-faceted mechanisms of plasticity/assimilation and mutation/selection for complex novelties and innovations in general.more » « less