skip to main content

Search for: All records

Creators/Authors contains: "Ocheltree, Troy W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adams, Henry (Ed.)

    The ubiquity of woody plant expansion across many rangelands globally has led to the hypothesis that the global rise in atmospheric carbon dioxide concentration ([CO2]) is a global driver facilitating C3 woody plant expansion. Increasing [CO2] also influences precipitation patterns seasonally and across the landscape, which often results in the prevalence of drought in rangelands. To test the potential for [CO2] to facilitate woody plant growth, we conducted a greenhouse study for 150 days to measure CO2 effects on juveniles from four woody species (Cornus drummondii C.A. Mey., Rhus glabra L., Gleditsia triacanthos L., Juniperus osteosperma Torr.) that are actively expanding into rangelands of North America. We assessed chronic water-stress (nested within CO2 treatments) and its interaction with elevated [CO2] (800 p.p.m.) on plant growth physiology for 84 days. We measured leaf-level gas exchange, tissue-specific starch concentrations and biomass. We found that elevated [CO2] increased photosynthetic rates, intrinsic water-use efficiencies and leaf starch concentrations in all woody species but at different rates and concentrations. Elevated [CO2] increased leaf starch levels for C. drummondii, G. triacanthos, J. osteosperma and R. glabra by 90, 39, 68 and 41%, respectively. We also observed that elevated [CO2] ameliorated the physiological effects of chronic water stress for all our juvenile woody species within this study. Elevated [CO2] diminished the impact of water stress on the juvenile plants, potentially alleviating an abiotic limitation to woody plant establishment in rangelands, thus facilitating the expansion of woody plants in the future.

    more » « less
    Free, publicly-accessible full text available December 31, 2023
  2. Abstract

    The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2(+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2, warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre‐dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2and/or warming. Effects of elevated CO2were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2, which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near‐term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture).

    more » « less
  3. Summary

    Global change forecasts in ecosystems require knowledge of within‐species diversity, particularly of dominant species within communities. We assessed site‐level diversity and capacity for adaptation inBouteloua gracilis, the dominant species in the Central US shortgrass steppe biome.

    We quantified genetic diversity from 17 sites across regional scales, north to south from New Mexico to South Dakota, and local scales in northern Colorado. We also quantified phenotype and plasticity within and among sites and determined the extent to which phenotypic diversity inB. graciliswas correlated with climate.

    Genome sequencing indicated pronounced population structure at the regional scale, and local differences indicated that gene flow and/or dispersal may also be limited. Within a common environment, we found evidence of genetic divergence in biomass‐related phenotypes, plasticity, and phenotypic variance, indicating functional divergence and different adaptive potential. Phenotypes were differentiated according to climate, chiefly median Palmer Hydrological Drought Index and other aridity metrics.

    Our results indicate conclusive differences in genetic variation, phenotype, and plasticity in this species and suggest a mechanism explaining variation in shortgrass steppe community responses to global change. This analysis ofB. gracilisintraspecific diversity across spatial scales will improve conservation and management of the shortgrass steppe ecosystem in the future.

    more » « less