skip to main content

Search for: All records

Creators/Authors contains: "Oesch, P. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 23, 2022
  2. Context. The Lyman- α line in the ultraviolet (UV) and the [CII] line in the far-infrared (FIR) are widely used tools to identify galaxies in the early Universe and to obtain insights into interstellar medium (ISM) properties in high-redshift galaxies. By combining data obtained with ALMA in band 7 at ∼320 GHz as part of the ALMA Large Program to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at the Keck Observatory, VIMOS and FORS2 at the Very Large Telescope, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 <   z  <  6 inmore »which we detect both the Lyman- α line in the UV and the [CII] line in the FIR. Aims. The goal of this paper is to constrain the properties of the Ly α emission in these galaxies in relation to other properties of the ISM. Methods. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we exploited the available optical spectroscopy to obtain the Ly α -[CII] and ISM-[CII] velocity offsets. Results. We find that 90% of the selected objects have Ly α -[CII] velocity offsets in the range 0 <  Δ v Ly α  − [CII]  <  400 km s −1 , in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower redshifts. At the same time, we observe ISM-[CII] offsets in the range −500 <  Δ v ISM−[CII]  <  0 km s −1 , in line with values at all redshifts, which we interpret as evidence for outflows in these galaxies. We find significant anticorrelations between Δ v Ly α −[CII] and the Ly α rest-frame equivalent width EW 0 (Ly α ) (or equivalently, the Ly α escape fraction f esc (Ly α )): galaxies that show smaller Δ v Ly α −[CII] have larger EW 0 (Ly α ) and f esc (Ly α ). Conclusions. We interpret these results in the framework of available models for the radiative transfer of Ly α photons. According to the models, the escape of Ly α photons would be favored in galaxies with high outflow velocities, producing large EW 0 (Ly α ) and small Δ v Ly α -[CII] , in agreement with our observations. The uniform shell model would also predict that the Ly α escape in galaxies with slow outflows (0 <   v out  <  300 km s −1 ) is mainly determined by the neutral hydrogen column density (NHI) along the line of sight, while the alternative model by Steidel et al. (2010, ApJ, 717, 289) would more highly favor a combination of NHI at the systemic velocity and covering fraction as driver of the Ly α escape. We suggest that the increase in Ly α escape that is observed in the literature between z  ∼ 2 and z  ∼ 6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction.« less
  3. Aims. We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE). These sources, detected in COSMOS and ECDFS, have been used to derive the total infrared luminosity function (LF) and to estimate the cosmic star formation rate density (SFRD) up to z  ≃ 6. Methods. We looked for counterparts of the ALMA sources in all the available multi-wavelength (from HST to VLA) and photometric redshift catalogues. We also made use of deeper UltraVISTA and Spitzer source lists and maps tomore »identify optically dark sources with no matches in the public catalogues. We used the sources with estimated redshifts to derive the 250 μ m rest-frame and total infrared (8–1000 μ m) LFs from z  ≃ 0.5 to 6. Results. Our ALMA blind survey (860 μ m flux density range: ∼0.3–12.5 mJy) allows us to further push the study of the nature and evolution of dusty galaxies at high- z , identifying luminous and massive sources to redshifts and faint luminosities never probed before by any far-infrared surveys. The ALPINE data are the first ones to sample the faint end of the infrared LF, showing little evolution from z  ≃ 2.5 to z ≃ 6, and a “flat” slope up to the highest redshifts (i.e. 4.5 <   z  <  6). The SFRD obtained by integrating the luminosity function remains almost constant between z  ≃ 2 and z  ≃ 6, and significantly higher than the optical or ultra-violet derivations, showing a significant contribution of dusty galaxies and obscured star formation at high- z . About 14% of all the ALPINE serendipitous continuum sources are found to be optically and near-infrared (near-IR) dark (to a depth K s  ∼ 24.9 mag). Six show a counterpart only in the mid-IR and no HST or near-IR identification, while two are detected as [C II] emitters at z  ≃ 5. The six HST+near-IR dark galaxies with mid-IR counterparts are found to contribute about 17% of the total SFRD at z  ≃ 5 and to dominate the high-mass end of the stellar mass function at z  >  3.« less
  4. The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z  = 4.4 and z  = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity tomore »the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40% of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8 × 10 8 L ⊙ and their median full width at half maximum is 252 km s −1 . After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR– L [CII] relations.« less
  5. The [C  II ] 158 μ m line is one of the strongest IR emission lines, which has been shown to trace the star formation rate (SFR) of galaxies in the nearby Universe, and up to z  ∼ 2. Whether this is also the case at higher redshift and in the early Universe remains debated. The ALPINE survey, which targeted 118 star-forming galaxies at 4.4 <   z  <  5.9, provides a new opportunity to examine this question with the first statistical dataset. Using the ALPINE data and earlier measurements from the literature, we examine the relation between the [C  II ]more »luminosity and the SFR over the entire redshift range from z  ∼ 4 − 8. ALPINE galaxies, which are both detected in [C  II ] and in dust continuum, show good agreement with the local L ([CII])–SFR relation. Galaxies undetected in the continuum by ALMA are found to be over-luminous in [C  II ] when the UV SFR is used. After accounting for dust-obscured star formation, by an amount of SFR(IR) ≈ SFR(UV) on average, which results from two different stacking methods and SED fitting, the ALPINE galaxies show an L ([CII])–SFR relation comparable to the local one. When [C  II ] non-detections are taken into account, the slope may be marginally steeper at high- z , although this is still somewhat uncertain. When compared homogeneously, the z  >  6 [C  II ] measurements (detections and upper limits) do not behave very differently to the z  ∼ 4 − 6 data. We find a weak dependence of L ([CII])/SFR on the Ly α equivalent width. Finally, we find that the ratio L ([CII])/ L IR ∼ (1 − 3) × 10 −3 for the ALPINE sources, comparable to that of “normal” galaxies at lower redshift. Our analysis, which includes the largest sample (∼150 galaxies) of [C  II ] measurements at z  > 4 available so far, suggests no or little evolution of the [C  II ]–SFR relation over the last 13 Gyr of cosmic time.« less
  6. The ALMA-ALPINE [CII] survey is aimed at characterizing the properties of a sample of normal star-forming galaxies (SFGs). The ALMA Large Program to INvestigate (ALPINE) features 118 galaxies observed in the [CII]-158 μ m line and far infrared (FIR) continuum emission during the period of rapid mass assembly, right after the end of the HI reionization, at redshifts of 4 <   z  <  6. We present the survey science goals, the observational strategy, and the sample selection of the 118 galaxies observed with ALMA, with an average beam minor axis of about 0.85″, or ∼5 kpc at the median redshiftmore »of the survey. The properties of the sample are described, including spectroscopic redshifts derived from the UV-rest frame, stellar masses, and star-formation rates obtained from a spectral energy distribution (SED) fitting. The observed properties derived from the ALMA data are presented and discussed in terms of the overall detection rate in [CII] and FIR continuum, with the observed signal-to-noise distribution. The sample is representative of the SFG population in the main sequence at these redshifts. The overall detection rate in [CII] is 64% for a signal-to-noise ratio (S/N) threshold larger than 3.5 corresponding to a 95% purity (40% detection rate for S / N  >  5). Based on a visual inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types, including 40% that are mergers, 20% extended and dispersion-dominated, 13% compact, and 11% rotating discs, with the remaining 16% too faint to be classified. This diversity indicates that a wide array of physical processes must be at work at this epoch, first and foremost, those of galaxy mergers. This paper sets a reference sample for the gas distribution in normal SFGs at 4 <   z  <  6, a key epoch in galaxy assembly, which is ideally suited for studies with future facilities, such as the James Webb Space Telescope (JWST) and the Extremely Large Telescopes (ELTs).« less
  7. ABSTRACT

    We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A3COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z ∼ 3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $\rm {\mu Jy\, beam}^{-1}$ (1σ). The detectionmore »rate is highly mass dependent, decreasing drastically below log (M*/M⊙) = 10.5. The detected galaxies show that the IRX–β relationship of massive (log M*/M⊙ > 10) main-sequence galaxies at z = 2.5–4.0 is consistent with that of local galaxies, while starbursts are generally offset by $\sim 0.5\, {\rm dex}$ to larger IRX values. At the low-mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX–M* relation at $\rm {log\, ({\it M}_{\ast }/\mathrm{M}_{\odot })\gt 9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at log M*/M⊙ < 10. However, our results are consistent with earlier measurements at z ∼ 5.5, indicating a potential redshift evolution between z ∼ 2 and z ∼ 6. Deeper observations targeting low-mass galaxies will be required to confirm this finding.

    « less