skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ogino, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    The production yields of the Σ(1385)±and Ξ(1530)0resonances are measured in pp collisions at$$ \sqrt{s} $$s= 13 TeV with ALICE. The measurements are performed as a function of the charged-particle multiplicity ⟨dNch/dη⟩, which is related to the energy density produced in the collision. The results include transverse momentum (pT) distributions,pT-integrated yields, mean transverse momenta of Σ(1385)±and Ξ(1530)0, as well as ratios of thepT-integrated resonance yields relative to yields of other hadron species. The Σ(1385)±±and Ξ(1530)0±yield ratios are consistent with the trend of the enhancement of strangeness production from low to high multiplicity pp collisions, which was previously observed for strange and multi-strange baryons. The yield ratio between the measured resonances and the long-lived baryons with the same strangeness content exhibits a hint of a mild increasing trend at low multiplicity, despite too large uncertainties to exclude the flat behaviour. The results are compared with predictions from models such as EPOS-LHC and PYTHIA 8 with Rope shoving. The latter provides the best description of the multiplicity dependence of the Σ(1385)±and Ξ(1530)0production in pp collisions at$$ \sqrt{s} $$s= 13 TeV.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. A<sc>bstract</sc>

    Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision$$ \sqrt{s_{\textrm{NN}}} $$sNN= 5.02 TeV and the corresponding nuclear modification factor$$ {R}_{\textrm{pPb}}^{\textrm{ch}\ \textrm{jet}} $$RpPbchjetare presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region |ηjet|<0.5 from charged particles using the anti-kTalgorithm with resolution parametersR= 0.2, 0.3, and 0.4. ThepT-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10<$$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$pT,jetch<140 GeV/cand 10<$$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$pT,jetch<160 GeV/c, respectively, together with the nuclear modification factor$$ {R}_{\textrm{pPb}}^{\textrm{ch}\ \textrm{jet}} $$RpPbchjetin the range 10<$$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$pT,jetch<140 GeV/c. The analysis extends thepTrange of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$sNN= 5.02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD Powhegcalculations with parton shower provided by Pythia8 as well as by Jetscapesimulations.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. A<sc>bstract</sc>

    Results on the transverse spherocity dependence of light-flavor particle production (π, K, p,ϕ, K*0,$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, Λ, Ξ) at midrapidity in high-multiplicity pp collisions at$$ \sqrt{s} $$s= 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator$$ \left({S}_{\textrm{O}}^{p_{\textrm{T}}=1}\right) $$SOpT=1categorizes events by their azimuthal topology. Utilizing narrow selections on$$ {S}_{\textrm{O}}^{p_{\textrm{T}}=1} $$SOpT=1, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The$$ {S}_{\textrm{O}}^{p_{\textrm{T}}=1} $$SOpT=1estimator is found to effectively constrain the hardness of the events when the midrapidity (|η| < 0.8) estimator is used.

    The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced.

    The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of$$ {S}_{\textrm{O}}^{p_{\textrm{T}}=1} $$SOpT=1.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  4. A<sc>bstract</sc>

    The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV, using the semi-inclusive azimuthal-difference distribution ∆φof charged-particle jets recoiling from a high transverse momentum (high-pT,trig) trigger hadron. Jet quenching may broaden the ∆φdistribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs apT,trig-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Free, publicly-accessible full text available April 1, 2025
  6. Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried byΛc+baryons,zch, in hadronic collisions. The results are obtained in proton-proton (pp) collisions ats=13TeVat the LHC, withΛc+baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of3pTΛc+<15GeV/cand7pTjet ch<15GeV/c, respectively. Thezchdistribution is compared to a measurement ofD0-tagged charged jets inppcollisions as well as to 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation.

    © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  7. Free, publicly-accessible full text available April 1, 2025
  8. The first measurement of the cross section for incoherent photonuclear production ofJ/ψvector mesons as a function of the Mandelstam|t|variable is presented. The measurement was carried out with the ALICE detector at midrapidity,|y|<0.8, using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair ofsNN=5.02TeV. This rapidity interval corresponds to a Bjorken-xrange(0.31.4)×103. Cross sections are given in five|t|intervals in the range0.04<|t|<1GeV2and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a|t|dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.

    © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  9. Free, publicly-accessible full text available March 1, 2025
  10. Free, publicly-accessible full text available March 1, 2025