skip to main content


Search for: All records

Creators/Authors contains: "Ogunniyi, Emmanuel A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In high-rate structural health monitoring, it is crucial to quickly and accurately assess the current state of a component under dynamic loads. State information is needed to make informed decisions about timely interventions to prevent damage and extend the structure’s life. In previous studies, a dynamic reproduction of projectiles in ballistic environments (DROPBEAR) testbed was used to evaluate the accuracy of state estimation techniques through dynamic analysis. This paper extends previous research by incorporating the local eigenvalue modification procedure (LEMP) and data fusion techniques to create a more robust state estimate using optimal sampling methodologies. The process of estimating the state involves taking a measured frequency response of the structure, proposing frequency response profiles, and accepting the most similar profile as the new mean for the position estimate distribution. Utilizing LEMP allows for a faster approximation of the proposed model with linear time complexity, making it suitable for 2D or sequential damage cases. The current study focuses on two proposed sampling methodology refinements: distilling the selection of candidate test models from the position distribution and applying a Kalman filter after the distribution update to find the mean. Both refinements were effective in improving the position estimate and the structural state accuracy, as shown by the time response assurance criterion and the signal-to-noise ratio with up to 17% improvement. These two metrics demonstrate the benefits of incorporating data fusion techniques into the high-rate state identification process. 
    more » « less