skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ohayon, Yoel P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience. 
    more » « less
  2. Abstract Non‐canonical interactions in DNA remain under‐explored in DNA nanotechnology. Recently, many structures with non‐canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non‐canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross‐talking between Watson–Crick and non‐canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long‐range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non‐canonical motifs and their topological self‐assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs. 
    more » « less
  3. Abstract The successful self‐assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally‐designed, nanoscale components. This 3D DNA tile owes its “tensegrity” nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter‐junction regions, corresponding to two‐thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed turn inter‐junction segments, yielding right‐handed, antiparallel, “J1” junctions. Here a minimal DNA triangle motif consisting of 3‐bp inter‐junction segments, or one‐third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left‐handed tertiary structure mediated by a locally‐parallel Holliday junction—the “L1” junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter‐junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under‐explored class of self‐assembling, chiral nanomaterials for topological processes in biological systems. 
    more » « less